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Performance Analysis and Optimal Filter Design for
Sigma-Delta Modulation via Duality With DPCM
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Abstract— Sampling above the Nyquist rate is at the heart
of sigma–delta modulation, where the increase in sampling rate
is translated to a reduction in the overall (mean-squared-error)
reconstruction distortion. This is attained by using a feedback
filter at the encoder, in conjunction with a low-pass filter at the
decoder. The goal of this paper is to characterize the optimal
trade-off between the per-sample quantization rate and the
resulting mean-squared-error distortion under various restric-
tions on the feedback filter. To this end, we establish a duality
relation between the performance of sigma–delta modulation
and the performance of differential pulse-code modulation when
applied to (discrete-time) band-limited inputs. As the optimal
trade-off for the latter scheme is fully understood, the full
characterization for sigma–delta modulation, as well as the
optimal feedback filters, immediately follows.

Index Terms— Quantization, analog-to-digital conversion,
sigma-delta modulation, differential pulse-code modulation.

I. INTRODUCTION

ANALOG-TO-DIGITAL (A/D) and digital-to-analog
(D/A) converters are essential in modern electronics.

In many cases, it is the quality of these converters
that constitutes the main bottleneck in the system, and
consequently, dictates its entire performance. On the other
hand, as digital circuits are now considered relatively cheap
to implement, the interface between the analog and digital
domains is often one of the most expensive components in
the system. Developing A/D and D/A components that are
on the one hand relatively simple, and on the other hand
introduce little distortion, is therefore of interest.

Often, the same A/D (or D/A) component is applied to
a variety of signals with distinct characterizations. For this
reason, it is desirable to design the data converter to be robust
to the characteristics of the input signal. One assumption
that cannot be avoided is the bandwidth of the signal to be
converted, which dictates the minimal sampling rate, according
to Nyquist’s theorem. Beyond bandwidth, however, one would
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like to assume as little as possible about the input signal. A rea-
sonable model for the input signal is therefore a stochastic one,
where the input signal is assumed to be a stationary Gaussian
process with a given variance and an arbitrary unknown power
spectral density (PSD) within the assumed bandwidth, and
zero otherwise. In this paper, we adopt this compound model
which is rich enough to include a wide variety of processes.
The robustness requirement from the A/D (or D/A) converter
translates to requiring that it induces a small average distortion
simultaneously for all processes within our compound model.

Sigma-delta modulation is a widely used technique for A/D
as well as D/A conversion. The main advantage offered by
this type of modulation is the ability to trade-off the sampling
rate and the number of bits per sample required for achieving
a target mean-squared error (MSE) distortion. The input to
the sigma-delta modulator is a signal sampled at L times
the Nyquist rate (L > 1). This over-sampled signal is then
quantized using an R-bit quantizer. In much of the literature
about sigma-delta modulation, no stochastic model is assumed
for the input signal. Nevertheless, when such a model is
assumed, the benefit of over-sampling can be easily understood
from basic rate-distortion theoretic principles: the (per-sample)
rate required to achieve distortion D for the over-sampled
signal is L times smaller than the rate required to achieve
the same distortion for the signal obtained by sampling at
the Nyquist rate. Thus, in principle, increasing the sampling
rate should allow one to use quantizers with lower resolution,
which is desirable in many applications.

However, as the rate-distortion theorem is based on coding
over large blocklengths [2], guaranteeing a constant product
of the number of bits per sample needed to achieve distor-
tion D, and the over-sampling ratio L, requires in principle
vector-quantization of a long block of samples. In A/D and
D/A conversion, vector-quantization in high dimensions is a
prohibitively complex operation, and quantization is invariably
done via scalar uniform quantizers. Scalar quantizers alone
cannot translate the increase of sampling rate to a significant
reduction in the necessary resolution [3], but fortunately this
problem can be circumvented with the aid of appropriate signal
processing.

In sigma-delta based converters, the quantization noise
is shaped using a causal shaping filter embedded within a
feedback loop, see Figure 1. The filter coefficients are chosen
in a manner that ensures that most of the energy of the shaped
quantization noise lies outside the frequency band occupied by
the over-sampled signal. At the decoder, the quantized signal
is low-pass filtered, cancelling out the high-frequencies of the
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Fig. 1. The test channel corresponding to the sigma-delta modulation architecture, with the sigma-delta quantizer replaced by an AWGN channel. The input
is assumed to be over-sampled at L times the Nyquist rate.

Fig. 2. The test channel corresponding to the DPCM architecture, with the DPCM quantizer replaced by an AWGN channel. The input is assumed to be
over-sampled at L times the Nyquist rate.

quantization noise process without effecting the signal, such
that the decoder’s output is composed of the original signal
corrupted by a low-pass noise process.

Another technique for compressing sources with memory,
which explicitly models the source as a stochastic process,
is differential pulse-code modulation (DPCM). In DPCM,
a prediction filter is applied to the quantized signal. The
output of this filter is then subtracted from the source and
the result is fed to the quantizer, see Figure 2. At the decoder,
the quantized signal is simply passed through the inverse of the
prediction filter. The well-known “DPCM error identity” [4]
states that the output of the decoder is equal to the source
plus the quantization error, just like in simple non-predictive
quantization. The benefit of using DPCM, however, is that the
signal fed to the quantizer is the error in predicting the source
from its quantized past, rather than the source itself. If the
coefficients of the prediction filter are chosen appropriately,
the variance of this error should be smaller than the variance
of the original source, which translates to a reduction in the
number of bits required from the quantizer for achieving a
certain distortion.

The performance of DPCM under the assumption of
high-resolution quantization is well understood since as early
as the mid 60’s [4]–[6]. Under this assumption, the prediction
filter should be chosen as the optimal linear minimum mean-
squared-error (MMSE) prediction filter of the source process
from its past [4], and the effect of the filtered quantization
noise can be neglected in the prediction process. While in most
cases where DPCM is traditionally used, the high resolution
assumption is well justified, it totally breaks down for the class
of band-limited processes, which includes the input signals to
sigma-delta modulators. Indeed, the prediction error of such
a process from its infinite past has zero-variance, rendering

the DPCM high-resolution rate-distortion formulas completely
useless.

A. Connection to Previous Work

The connection between DPCM and sigma-delta modu-
lation, as two instances of predictive coding, was known
from the outset. Indeed, both paradigms emerged from
two Bell-Labs patents authored by CC Cutler [7], [8]
in 1952 and 1954.

In fact, by adding appropriate pre- and post-filters to the
sigma-delta modulator, as depicted in Figure 3, the input
to the quantizer, as well as the final reconstruction of the
signal, become identical to those in the DPCM architecture
of Figure 2, see [9, Sec. II], [10, Ch. 3.2.4]. Thus, one
may implement DPCM via either of the architectures of
Figure 2 or Figure 3.

However, an important aspect of our interest in sigma-delta
modulators as a means of data-conversion rather than data-
compression, is that it dictates that the assumptions one can
make on the statistics of the input signal must be minimal.
Consequently, we consider a compound class of sources that
consists of all stationary Gaussian processes with variance σ 2

X
whose PSD is limited to some predefined frequency band.
Unfortunately, for this compound class, DPCM is unsatisfac-
tory, as its performance depends not only on the variance and
bandwidth, but rather, on the explicit form of the PSD. On the
other hand, for any choice of C(Z), sigma-delta modulation,
as depicted in Figure 1, attains the same performance for
all sources within the class. The duality result we establish
here, is that the performance of sigma-delta modulation for
any source in the compound class is equal to that of DPCM
designed for a band-limited stationary process with a flat PSD.
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Fig. 3. A test channel corresponding to the sigma-delta modulation with pre-filter 1 − C(Z) and post-filter 1
1−C(Z) . This test-channel is equivalent to that

from Figure 2.

Data converters often operate at very high rates, and it
therefore makes sense to impose various constraints on the
sigma-delta feedback filter C(Z), such as confining it to be
a finite impulse response (FIR) filter with a limited number
of taps. For a given desired MSE distortion level, our goal
is to find the constrained sigma-delta feedback filter C(Z)
that minimizes the quantization rate w.r.t. all sources in the
compound class, and to characterize the attained rate. We note
that this goal is different than the one pursued in [11], where
the optimal unconstrained filters w.r.t. a known PSD were
found.

The problem of finding the optimal N-tap FIR sigma-delta
feedback filter C(Z) for a compound family of sources similar
to ours, was considered in [9]. The optimal filter was claimed
in [9] to be the N th order MMSE prediction filter C(Z) =
(1− Z−1)N of a bandpass stationary process from its past, and
for a fixed target MSE distortion the required quantization rate
was found to decrease linearly with N . Such as statement is
obviously inaccurate, as it violates Shannon’s rate-distortion
theorem. The major shortcoming of the analysis in [9] is that
it (implicitly) makes the high-resolution assumption that the
variance of the quantizer’s input is solely dictated by the
target signal {Xn}, whereas the contribution of the quanti-
zation noise to this variance can be neglected. As discussed
above, for over-sampled processes this assumption may not
be valid even when the quantizer’s resolution is very high.
In particular, using the filter C(Z) = (1 − Z−1)N from [9],
the energy of the quantization noise within the frequency band
occupied by the signal indeed decreases exponentially with
N . However, the noise’s energy outside this band increases
rapidly with N , and for any quantization resolution it will
become much greater than σ 2

X for N large enough, mak-
ing the high-resolution assumption inapplicable. In this case,
the dynamic range of the quantizer will be exceeded and
overload errors would frequently occur.

It therefore follows that in the analysis of sigma-delta
modulators one should not make high-resolution assumptions,
but rather must take into account the effect of the filtered quan-
tization noise on the variance of the quantizer’s input. Fortu-
nately, in the analysis of DPCM modulators the high-resolution
assumption has been overcome in [12]. It was shown that
for any distortion level and any stationary Gaussian source,
the DPCM architecture induces a rate-distortion optimal test
channel, provided that the prediction filter is chosen as the
optimal filter for predicting the source from its quantized past,
and in addition water-filling pre- and post-filters are applied.
The analysis of [12], which takes into account the effect of

the quantization noise, can therefore be used to obtain the
optimal feedback filter and its corresponding performance for a
DPCM system applied to an over-sampled stationary Gaussian
source. In this paper, we leverage the results from [12] to
the analysis of sigma-delta modulators, by establishing an
appropriate duality between the two architectures.

B. Contributions

Let S be the compound class of all discrete-time stationary
Gaussian sources with variance σ 2

X and PSD that is zero for
all ω /∈ [−π/L, π/L], L ≥ 1. Note that this class corresponds
to uniformly sampling a compound class of continuous-time
stationary Gaussian processes with variance σ 2

X and PSD that
is zero for all | f | > fmax, at a sampling rate of 2L fmax
samples/per second. Let {XDPCM

n } be a discrete-time stationary
Gaussian process with PSD

SDPCM
X (ω) =

{
Lσ 2

X for |ω| ≤ π/L

0 for π/L < |ω| < π,
(1)

and note that {XDPCM
n } ∈ S.

Our main result, derived in Section II, is that for any process
{X��

n } from the compound class S, the test channel induced
by the sigma-delta modulator (Figure 1) achieves exactly the
same rate-distortion function as that of the DPCM test channel
(Figure 2) with input {XDPCM

n }. More specifically, for such
processes, for any choice of σ 2

DPCM and prediction filter C(Z)
in the test channel of Figure 2, the same choice of C(Z)
together with the choice

σ 2
�� = σ 2

DPCM

L · 1
2π

∫ π/L
−π/L |1 − C(ω)|2dω

(2)

in Figure 1, yields the same compression rate and the same
distortion.

While this result is simple to derive, it has a very pleasing
consequence: the problem of optimizing the filter C(Z) in
sigma-delta modulation w.r.t. any signal in S, under any
set of constraints, can be cast as an equivalent problem of
optimizing the DPCM prediction filter w.r.t. input {XDPCM

n }
under the same set of constraints. Furthermore, in Section II-A,
we formalize a similar duality between DPCM and sigma-delta
modulation for a frequency-weighted-mean-squared-error dis-
tortion measure. In this case SDPCM

X (ω) is replaced with a PSD
that depends on the distortion’s weight function.

In principle, recasting the sigma-delta optimization problem
as an MMSE prediction problem may be derived directly
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from the formulas characterizing its performance, as given
in Proposition 1. Nevertheless, establishing the equivalence
between sigma-delta modulation and DPCM, in the specific
form described above, is insightful as it allows to borrow
known results from the literature about the latter.

Having recast the filter optimization problem for sigma-delta
as that of optimal linear prediction, we can readily obtain the
solution under constraints for which an explicit solution was
lacking in the literature, or was cumbersome to derive.

One may question the relevance of the test channel of
Figure 1 and its information-theoretic analysis to the prac-
tical, resource limited, problem of A/D and D/A conversion
via sigma-delta modulators. To that end, in Section III we
replace the AWGN channel from Figure 1 with a simple
scalar uniform (dithered) quantizer of finite support, which is
suitable for implementation within A/D and D/A converters.
As long as overload does not occur, the effect of applying
the scalar quantizer is equivalent to that of an additive noise
channel. We show that the rate-distortion trade-off derived for
sigma-delta modulation in Section II remains valid with high
probability, with a constant additive excess-rate penalty for
using scalar quantization. The purpose of this excess-rate is to
ensure that an overload event, which jeopardizes the stability
of the system, occurs with low probability. The stochastic
model we assume for the input process allows us to tackle the
issue of stability in a systematic and rigorous manner, and the
trade-off between the excess-rate and the overload probability
is analytically determined.

Clearly, a sigma-delta modulator can only perform well
if overload errors are rather rare. The stability analysis in
Section III is based on avoiding overload events w.h.p., and
does not aim to consider the effect of such events on the
distortion once they occur. In general, the overload probability
of the scheme described in Section III decreases double
exponentially with the excess-rate of the quantizer w.r.t. the
mutual information. Thus, taking an excess rate of 1 − 2 bits
will usually yield a sufficiently low overload probability.
However, sigma-delta quantizers are often employed with a
one-bit quantizer. In this case, the overload error probability
cannot be very low. Consequently, the designer would need to
guarantee that the effect of overload errors is local in time, and
does not drive the system out of stability. There are various
restrictions one can place on C(Z) in pursuit of the latter goal.
The issue of maintaining stability when overload errors are
unavoidable is outside the scope of this paper. Nevertheless,
we stress that our main result is of great relevance to this
setting, as it shows that the filter C(Z) should be chosen as
the optimal MMSE prediction filter of {XDPCM

n } from its noisy
past under the stability ensuring restrictions.

II. MAIN RESULTS

We begin by introducing some basic notation that will be
used in the sequel. For a discrete signal {cn}, the Z -transform
is defined as

C(Z) �
∞∑

n=−∞
cn Z−n,

and the Fourier transform as

C(ω) � C(Z)|Z=e jω =
∞∑

n=−∞
cne− jωn.

For a discrete (real) stationary process {Xn} with zero-mean
and autocorrelation function RX [k] � E(Xn+k Xn) we define
the power-spectral density (PSD) as the Fourier transform of
the autocorrelation function

SX (ω) �
∞∑

k=−∞
RX [k]e− jωk .

The PSD of a continuous stationary process is defined in an
analogous manner.

Assume X��(t) is a continuous stationary band-limited
Gaussian process with zero mean and variance σ 2

X , whose
PSD is zero for all frequencies | f | > fmax, but otherwise
unknown. The Nyquist sampling rate for this process is 2 fmax
samples per second. Since our focus here is on quantization of
over-sampled signals, we assume that X��(t) is sampled uni-
formly with rate of 2L fmax samples per second for some L >
1. The obtained sampled process {X��

n } is therefore a discrete
stationary Gaussian process with zero mean and variance σ 2

X
whose PSD is zero for all ω /∈ [−π/L, π/L], but otherwise
unknown. Our goal is to characterize the rate-distortion trade-
off obtained by a sigma-delta modulator, modeled as the test
channel from Figure 1, whose input is {X��

n }. To that end,
we establish an equivalence between the performance obtained
by this test channel for any stationary band-limited Gaussian
process with variance σ 2

X and the performance obtained by the
test channel from Figure 2, which models a DPCM compres-
sion system, for a stationary flat band-limited Gaussian process
with variance σ 2

X . The performance of the latter is now well
understood [12], and, as we shall show, can be translated to
a simple characterization of the performance of sigma-delta
modulation.

First, we recall the derivation of the distortions attained
by the test channels from Figure 1 and Figure 2, and
the scalar mutual information I (U��

n ; U��
n + N��

n ) and
I (UDPCM

n ; UDPCM
n + NDPCM

n ) between the input and output of
the additive white Gaussian noise (AWGN) channels embed-
ded within the two test channels.

The test channels in Figure 1 and Figure 2 do not imme-
diately induce an output distribution from which a random
quantization codebook with rate I (Un; Un + Nn) and MSE
distortion D can be drawn. The reason for this is the sequential
nature of the compression, which seems to conflict with the
need of using high-dimensional quantizers, as required for
attaining a quantization error distributed as Nn with compres-
sion rate I (Un; Un + Nn). Fortunately, this difficulty, which is
also present in decision–feedback equalization for intersymbol
interference channels, can be overcome with the help of an
interleaver [12]–[14]. Thus, the scalar mutual information
I (Un; Un + Nn) can indeed be interpreted as the compression
rate needed to achieve the distortion attained by the test
channels in Figure 1 and Figure 2. We elaborate further about
this in subsection II-B. Moreover, in Section III we show that
I (Un; Un + Nn) is closely related to the required quantization
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rate in a sigma-delta modulator that applies a uniform scalar
quantizer of finite support.

We begin by considering the test channel in Figure 1, that
corresponds to sigma-delta modulation, with the sigma-delta
quantizer replaced by an AWGN channel with zero mean and
variance σ 2

��. The filter C(Z) is assumed to be strictly causal.
The derivations in the proof of Proposition 1 below, as well
as in that of Proposition 2, are straightforward, and are based
on, see [11], [12], [15]. We nevertheless present the proofs in
order to set forward some basic ideas to be used later.

Proposition 1: For any Gaussian stationary process {X��
n }

with variance σ 2
X whose PSD is zero for all ω /∈ [−π/L, π/L],

the test channel from Figure 1, corresponding to sigma-delta
modulation, achieves MSE distortion

D = σ 2
�� · 1

2π

∫ π/L

−π/L
|1 − C(ω)|2dω,

and its scalar mutual information satisfies1

I (U��
n ; U��

n + N��
n )

= 1

2
log

(
1 + 1

2π

∫ π

−π
|C(ω)|2dω + σ 2

X

σ 2
��

)
.

Proof: From Figure 1, we have that

U��
n = X��

n − cn ∗ N��
n , (3)

and therefore

U��
n + N��

n = X��
n + (δn − cn) ∗ N��

n ,

where δn is the discrete identity filter. Using the fact that
{X��

n } is a low-pass process, passing it through the filter H (ω)
has no effect, and hence

X̂��
n = hn ∗ (U��

n + N��
n )

= X��
n + hn ∗ (δn − cn) ∗ N��

n .

The MSE distortion attained by the test channel from Figure 1
is therefore

D = E(X��
n − X̂��

n )2 = σ 2
�� · 1

2π

∫ π/L

−π/L
|1 − C(ω)|2dω.

The scalar mutual information between the “quantizer’s” input
U��

n and output U��
n + N��

n is given by

I (U��
n ; U��

n + N��
n ) = h(U��

n + N��
n ) − h(N��

n ) (4)

= 1

2
log

(
1 + E(U��

n )2

σ 2
��

)
, (5)

where (4), as well as (5), follow from the statistical indepen-
dence of N��

n and U��
n . Using (3), the variance of U��

n is

E(U��
n )2 = σ 2

X + σ 2
��

1

2π

∫ π

−π
|C(ω)|2dω. (6)

Substituting (6) into (5) establishes the second part of the
proposition.

Next, we analyze the test channel in Figure 2, that cor-
responds to DPCM compression with the DPCM quantizer

1All logarithms in this paper are taken to base 2.

replaced by an AWGN channel with zero mean and variance
σ 2

DPCM. As in the test channel of Figure 1, the filter C(Z)
is strictly causal. The distortion corresponding to this test
channel, as well as I (UDPCM

n ; UDPCM
n +NDPCM

n ), were already
found in [12, Th. 1] for the special case where C(Z) is
the optimal MMSE infinite length prediction filter of XDPCM

n
from all past samples of the process {XDPCM

n + NDPCM
n }. The

following straightforward proposition characterizes the rate
and distortion for any choice of the causal filter C(Z) and
any value of σ 2

DPCM.
Proposition 2: For a Gaussian stationary process {XDPCM

n }
with variance σ 2

X and PSD

SDPCM
X (ω) =

{
Lσ 2

X for |ω| ≤ π/L

0 for π/L < |ω| < π,
(7)

the test channel from Figure 2, corresponding to DPCM,
achieves MSE distortion

D = σ 2
DPCM

L
,

and its scalar mutual information satisfies

I (UDPCM
n ; UDPCM

n + NDPCM
n )

= 1

2
log

(
1 + 1

2π

∫ π

−π
|C(ω)|2dω

+ Lσ 2
X

σ 2
DPCM

1

2π

∫ π/L

−π/L
|1 − C(ω)|2dω

)
.

Proof: From Figure 2, we have that

UDPCM
n = XDPCM

n − cn ∗ V DPCM
n (8)

V DPCM
n = UDPCM

n + NDPCM
n + cn ∗ V DPCM

n (9)

Substituting (8) in (9) yields

V DPCM
n = XDPCM

n + NDPCM
n . (10)

Using the fact that {XDPCM
n } is a low-pass process, as before,

we obtain

X̂DPCM
n = hn ∗ (XDPCM

n + NDPCM
n )

= XDPCM
n + hn ∗ NDPCM

n . (11)

Since {NDPCM
n } is AWGN with variance σ 2

DPCM, the variance
of the filtered process hn ∗ NDPCM

n is σ 2
DPCM/L. Thus,

D = E(XDPCM
n − X̂DPCM

n )2 = σ 2
DPCM

L
.

As in the analysis of the test channel from Figure 1, the scalar
mutual information between UDPCM

n and UDPCM
n + NDPCM

n is
given by

I (UDPCM
n ; UDPCM

n + NDPCM
n ) = 1

2
log

(
1 + E(UDPCM

n )2

σ 2
DPCM

)
.

(12)

Now, substituting (10) in (8) gives

UDPCM
n = (δn − cn) ∗ XDPCM

n − cn ∗ NDPCM
n ,
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and the variance of Un is therefore

E(UDPCM
n )2

= 1

2π

∫ π

−π
SDPCM

X (ω)|1 − C(ω)|2dω

+ 1

2π

∫ π

−π
SDPCM

N (ω)|C(ω)|2dω

= Lσ 2
X

2π

∫ π/L

−π/L
|1 − C(ω)|2dω + σ 2

DPCM

2π

∫ π

−π
|C(ω)|2dω.

(13)

Substituting (13) into (12) establishes the second part of the
proposition.

Remark 1: In propositions 1 and 2 we derived the scalar
mutual information between the input and output of the
AWGN test channels embedded in Figures 1 and 2, respec-
tively. As will become clear in Section III, the scalar mutual
information is closely related to the required quantization rate
when a scalar memoryless quantizer is used within the sigma-
delta or DPCM modulator. In [12] and [14], the directed infor-
mation was shown to be related to the required quantization
rate when the quantizer is followed by an entropy coder. Here,
we do not consider applying entropy coding to the quantizer’s
output as we require that the designed modulator be robust
to the statistics of the input process, whereas entropy coding
is very sensitive to the process statistics. Moreover, if the
design of an A/D (or D/A) is considered, the appropriate merit
for the modulator’s complexity is the number of quantization
levels within the scalar quantizer, which are not reduced by
incorporating an entropy coder.

Our main result now follows immediately from Proposi-
tions 1 and 2.

Theorem 1: Let {X��
n } be any Gaussian stationary process

with variance σ 2
X whose PSD is zero for all ω /∈ [−π/L, π/L],

let {XDPCM
n } be a flat low-pass Gaussian stationary process

with PSD as in (7), and let C(Z) be a strictly causal filter.
The test channel from Figure 1 with

σ 2
�� = D

1
2π

∫ π/L
−π/L |1 − C(ω)|2dω

,

and the test channel from Figure 2 with

σ 2
DPCM = L · D,

both achieve MSE distortion D. Furthermore, in both cases,
the scalar mutual information satisfies

I (U��
n ; U��

n + N��
n ) = I (UDPCM

n ; UDPCM
n + NDPCM

n )

= 1

2
log

(
1 + 1

2π

∫ π

−π
|C(ω)|2dω

+σ 2
X

D

1

2π

∫ π/L

−π/L
|1 − C(ω)|2dω

)
.

This theorem indicates that for any stationary band-limited
Gaussian process with variance σ 2

X , the sigma-delta test chan-
nel from Figure 1 achieves exactly the same rate-distortion
trade-off as that of the DPCM test channel from Figure 2
with a stationary flat band-limited Gaussian input with the

same variance, provided that the AWGN variances are scaled
according to (2). Thus, Theorem 1 provides a unified frame-
work for analyzing the performance of sigma-delta modulation
and DPCM. The benefit offered by such a unified framework,
is that any result known for DPCM can be translated to
a corresponding result for sigma-delta modulation, and vice
versa. Theorems 2 and Corollary 1 below constitute two
important examples of such results.

Theorem 2: Let {X��
n } be a Gaussian stationary process

with variance σ 2
X whose PSD is zero for all ω /∈ [−π/L, π/L]

and let C be a family of strictly causal filters. Define the
“virtual” process {Sn} as a Gaussian stationary process with
PSD as in (7), and the “virtual” process {Wn} as a Gaussian
i.i.d. random process statistically independent of {Sn} with
variance L · D, D > 0. Let

σ ∗2
D = min

C(Z)∈C
E (Sn − cn ∗ (Sn + Wn))2

C∗
D(Z) = argmin

C(Z)∈C
E (Sn − cn ∗ (Sn + Wn))2 .

If the filter C(Z) in the sigma-delta test channel from Figure 1
belongs to C and the MSE distortion attained by this test
channel is D, then

I (U��
n ; U��

n + N��
n ) ≥ 1

2 log

(
1 + σ ∗2

D
L·D

)
, (14)

with equality if C(Z) = C∗
D(Z).

Theorem 2 states that for a target distortion D, the sigma-
delta filter which minimizes the required compression rate is
the optimal linear time-invariant MMSE estimator, within the
class of constraints C, for Sn from the past of the noisy process
{Sn + Wn}. For example, if C consists of all strictly causal
finite-impulse response (FIR) filters of length p, the optimal
filter C(Z) is the optimal predictor of Sn from the samples
{Sn−1 + Wn−1, . . . , Sn−p + Wn−p}, which can be easily cal-
culated in closed-form.

The optimal sigma-delta filter design problem was
studied by several authors, under various assump-
tions [4], [9], [11], [15]–[18]. However, to the best of
our knowledge, the simple expression from Theorem 2 for
the optimal filter as the optimal predictor of Sn from the
past of {Sn + Wn} is novel. The references most relevant
to Theorem 2, are perhaps [11], [15], [18]. Spang, III, and
Schultheiss [18] formulated an optimization problem for
finding the best FIR filter with p coefficients in a sigma-delta
modulator with a scalar quantizer, under a fixed overload
probability. Their optimization problem can be solved
numerically, but no closed form solution was given. In [11]
and [15] the design of an optimal unconstrained sigma-delta
filter was studied, under the assumption of a fixed scalar
quantizer that can only be scaled in order to control the
overload probability. Equations that characterize the optimal
filter were derived. However, the obtained expressions usually
yield filters with an infinite number of taps, and do not
provide the solution to the constrained problem. It is also
worth mentioning that for the case of a stationary Gaussian
process {Xn} with L = 1 (sampling at the Nyquist rate)
and known PSD, the optimal infinite length filter under the
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assumption of high-resolution quantization is known to equal
the optimal prediction filter of Xn from its (clean) past [16].
As already mentioned in the introduction, the high-resolution
assumption never holds when L > 1 and therefore this result
is inapplicable for over-sampled signals.

Proof of Theorem 2: By Proposition 1, if the test channel
from Figure 1 achieves MSE distortion D, we must have

σ 2
�� = D

1
2π

∫ π/L
−π/L |1 − C(ω)|2dω

.

By Theorem 1, the corresponding mutual information
I (U��

n ; U��
n + N��

n ) is equal to the mutual information
I (UDPCM

n ; UDPCM
n + NDPCM

n ) in the DPCM test channel from
Figure 2 with XDPCM

n = Sn , NDPCM
n = Wn and σ 2

DPCM = L·D.
Thus,

I (U��
n ; U��

n + N��
n )

= I (UDPCM
n ; UDPCM

n + NDPCM
n )

= 1

2
log

(
1 + E (Sn − cn ∗ (Sn + Wn))2

L · D

)
, (15)

where we have used (8), (10), and (12), to arrive at (15). It fol-
lows that among all filters in C, the filter that minimizes (15)
is C∗

D(Z), and that it attains (14) with equality.
It is interesting to note [12] that since {Wn} is an i.i.d.

process with variance L · D and C(Z) is strictly causal,
the mutual information (15) can also be written as

I (U��
n ; U��

n + N��
n )

= 1

2
log

(
E (Sn + Wn − cn ∗ (Sn + Wn))2

L · D

)
. (16)

Thus, the optimal predictor of Sn from the past of {Sn + Wn}
is identical to the optimal predictor of Sn + Wn from its past
samples. When C(Z) is taken as the (unique) infinite order
optimal one-step prediction filter of Sn + Wn from its past
samples, the prediction error variance is the entropy power of
the process {Sn + Wn} [19], which equals

2
1

2π

∫ π
−π log(SS(ω)+L·D)dω = (L · D)

(
1 + σ 2

X

D

)1/L

. (17)

Moreover, the infinite order prediction error

Epred
n � Sn + Wn − cn ∗ (Sn + Wn)

is in this case a white process. This, together with (17) implies
that for the optimal unconstrained sigma-delta filter C(Z) we
must have

SEpred(ω) � |1 − C(ω)|2 (L · D + SS(ω))

= (L · D)

(
1 + σ 2

X

D

)1/L

, ∀ω ∈ [−π, π) (18)

Combining (16), (17), and (18) yields the following corollary.
Corollary 1: Let {X��

n } be a Gaussian stationary process
with variance σ 2

X whose PSD is zero for all ω /∈ [−π/L, π/L].

If the test channel from Figure 1 attains MSE distortion D,
then

I (U��
n ; U��

n + N��
n ) ≥ 1

2L
log

(
1 + σ 2

X

D

)
. (19)

with equality if and only if C(Z) is a strictly causal filter
satisfying

|1 − C(ω)|2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + σ 2

X

D

)−(L−1)/L

ω ∈ [−π

L
,
π

L
]

(
1 + σ 2

X

D

)1/L

ω /∈ [−π

L
,
π

L
],

(20)

and

σ 2
�� = D

1
2π

∫ π/L
−π/L |1 − C(ω)|2dω

= L · D(
1 + σ 2

X
D

)−(L−1)/L
.

Remark 2: Note that the existence of a strictly causal
filter C(Z) which satisfies (20) is guaranteed by Wiener’s
spectral-factorization theory [19] due to the readily verified
fact that

2
1

2π

∫ π
−π log |1−C(ω)|2dω = 1.

The optimal filter induces a two-level frequency response
for |1 − C(ω)|2. Østergaard and Zamir [14] used sigma-delta
modulation to attain the optimal multiple-description rate-
distortion region. Interestingly, the optimal filter C(Z) in their
scheme also induced a two-level response for |1 − C(ω)|2.
We also note that the optimality of the unconstrained fil-
ter specified by (20) can be deduced as a special case
of [11, Sec. IV].

Remark 3: The output of the test channel from Figure 1 (as
well as that from Figure 2) is of the form X̂��

n = X��
n +E��

n ,
where E��

n has zero mean and variance D, and is statistically
independent of X��

n . This estimate can be further improved
by applying scalar MMSE estimation for X��

n from X̂��
n .

This boils down to producing the estimate ˆ̃X��
n = α X̂��

n ,
where

α = σ 2
X

σ 2
X + D

.

Consequently, the obtained MSE distortion is reduced to

D̃ = E(X��
n − α X̂��

n )2 = σ 2
X · D

σ 2
X + D

.

It is straightforward to verify [20] that with this improvement,
the sigma-delta test channel from Figure 1 with C(Z) and σ 2

��
as specified in Corollary 1 attains

I (U��
n ; U��

n + V ��
n ) = 1

2L
log

(
σ 2

X

D̃

)
,

which is the optimal rate-distortion function for a stationary
Gaussian source {X��

n } with PSD as in (7). It follows that the
sigma-delta test channel from Figure 1 with C(Z) and σ 2

��
as specified in Corollary 1 is minimax optimal for the class of



1160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 2, FEBRUARY 2019

all stationary Gaussian sources with variance σ 2
X and PSD that

equals zero for all ω /∈ [−π/L, π/L], i.e., no other system can
achieve MSE distortion D̃ with a smaller compression rate,
universally for all sources in this class.

A. Extension to Frequency-Weighted Mean
Squared Error Distortion

In many applications, higher values of distortion are accept-
able in certain frequency bands while smaller distortion is
permitted in other bands. The MSE distortion measure is
inadequate for such scenarios, and a commonly used distortion
measure, that (partially) captures such perceptual effects, is the
frequency-weighted mean squared error (FWMSE) criterion.
Under this criterion, the distortion is measured as

DFWMSE � 1

2π

∫ π

−π
P(ω)SE (ω)dω, (21)

where P(ω) is a non-negative weight function, and SE (ω) is
the PSD of the error process En � X��

n − X̂��
n . Note that

for P(ω) = 1,∀ω ∈ [−π, π), the FWMSE criterion reduces
to the MSE one. The next theorem shows that the constrained
optimal sigma-delta filter under the FWMSE criterion is the
optimal constrained prediction filter of a noisy process defined
according to the weight function P(ω).

Theorem 3: Let {X��
n } be a Gaussian stationary process

with variance σ 2
X whose PSD is zero for all ω /∈ [−π/L, π/L],

P(ω) a weighting function which forms a valid PSD, and C
a family of strictly causal filters. Define the “virtual” process
{Sn} as a Gaussian stationary process with PSD

SFWMSE
X (ω) =

{
Lσ 2

X P(ω) for |ω| ≤ π/L

0 for π/L < |ω| < π,
(22)

and the “virtual” process {Wn} as a Gaussian i.i.d. ran-
dom process statistically independent of {Sn} with variance
L · DFWMSE, DFWMSE > 0. Let

σ ∗2
DFWMSE

= min
C(Z)∈C

E (Sn − cn ∗ (Sn + Wn))2

C∗
DFWMSE

(Z) = argmin
C(Z)∈C

E (Sn − cn ∗ (Sn + Wn))2 .

If the filter C(Z) in the sigma-delta test channel from Figure 1
belongs to C and the FWMSE distortion w.r.t. P(ω) attained
by this test channel is DFWMSE, then

I (U��
n ; U��

n + N��
n ) ≥ 1

2 log

(
1 + σ ∗2

DFWMSE
L·DFWMSE

)
,

with equality if C(Z) = C∗
DFWMSE

(Z).
Sketch of Proof: The proof is fairly similar to that of

Theorem 2. Thus, for brevity, we omit the full proof and only
highlight its main steps:

• Repeat the derivation of Proposition 1 where now the
MSE distortion is replaced by FWMSE distortion. Note
that this has no effect on I (U��

n ; U��
n + N��

n ).
• Repeat the derivation of Proposition 2 where the PSD of

the input process is (22), rather than (7). Note that this
changes I (UDPCM

n ; UDPCM
n + NDPCM

n ), but has no effect
on the attained distortion.

• It follows that the DPCM test channel for the process
{Sn} under MSE distortion is equivalent to the sigma-delta
test channel with input {X��

n } under FWMSE distortion,
in the sense that in both channels if the attained distortion
is DFWMSE (under the appropriate distortion measure),
then

I (U��
n ; U��

n + N��
n )

= I (UDPCM
n ; UDPCM

n + NDPCM
n )

= 1

2
log

(
1 + E (Sn − cn ∗ (Sn + Wn))2

L · DFWMSE

)
.

B. Sigma-Delta Modulation With an Interleaved
Vector Quantizer

The goal of this short subsection is to give the test channel
from Figure 1 an operational meaning, i.e., to show how
the AWGN from the figure can be replaced with a lossy
source code of rate R = I (U��

n ; U��
n + N��

n ) whose
incurred quantization noise is distributed as N��

n . As already
mentioned, the key idea is to use an interleaver [12]–[14],
as we now recall.

Assume that {X��
n }, the input process to the sigma-delta

modulator, has a decaying memory, such that X��
n is essen-

tially independent of all samples of sufficiently distant sam-
pling times. In order to compress an N-dimensional vector

x�� = [X��
1 , . . . , X��

N ],
containing N consecutive samples of the process {X��

n },
we first split it into K vectors

x��
k = [X��

(k−1)M+1, . . . , X��
kM ], k = 1, . . . , K ,

where M � N/K . Now, we can apply K parallel sigma-delta
modulators, one for each such vector, where the only coupling
between the K parallel systems is through the quantization
step, which is applied jointly on all of them, as depicted
in Figure 4. By our assumption that {X��

n } has decaying
memory, if M is large enough the K inputs that enter the
quantizer Q(·) = [Q1(·), . . . , QK (·)] are i.i.d. random vari-
ables distributed as U��

n from Figure 1. For large enough K ,
standard rate-distortion arguments imply that there exists a
vector quantizer with rate I (U��

n ; U��
n + N��

n ) that induces
quantization noise distributed arbitrarily closely, in KL diver-
gence, to the AWGN N��

n [20].

III. SIGMA-DELTA MODULATION WITH

A SCALAR UNIFORM QUANTIZER

The previous subsection showed how to replace the AWGN
channel in Figure 1 with a vector quantizer whose rate is
arbitrarily close to R = I (U��

n ; U��
n + N��

n ) and whose
induced quantization noise distribution is close to that of N��

n .
The inputs to the vector quantizer are vectors of i.i.d. Gaussian
components. Thus, any “off-the-shelf” rate–distortion optimal
vector quantizer for an i.i.d. Gaussian source can be used.
The total sigma-delta compression system that is obtained is
therefore simple in the sense that it only requires the vector
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Fig. 4. K parallel sigma-delta modulators coupled by an K -dimensional quantizer Q(·).

quantizer to be good for quantizing an i.i.d. Gaussian source,
which is a standard task, rather than requiring it to be a good
quantizer for a band-limited Gaussian source.

However, the sigma-delta modulation architecture is mainly
used for A/D and D/A conversion. In such applications,
vector quantization is typically out of the question, and simple
uniform scalar quantizers of finite support are used. For such
quantizers, the quantization error is composed of two main
factors [4]: granular errors that correspond to the quantization
error in the case where the input signal falls within the
quantizer’s support, and overload errors that correspond to
the case where the input signal falls outside the quantizer’s
support. Due to the feedback loop, inherent to the sigma-delta
modulator, errors of the latter kind, whose magnitude is not
bounded, may have a disastrous effect as they jeopardize the
system’s stability. In order to avoid such errors, the support of
the quantizer has to be chosen appropriately. As the support
of the quantizer determines its rate for a given quantization
resolution, the overload probability can be controlled by
increasing the quantization rate.2

We shall show that, given that overload errors did not occur,
the quantization noise can be modeled as an additive noise.
Thus, the test channel from Figure 1 accurately predicts the
total distortion incurred by a sigma-delta A/D (or D/A) in this
case. Moreover, the overload probability is a doubly expo-
nentially decreasing function of R − I (U��

n ; U��
n + N��

n ),
where 2R are the number of levels in the scalar quantizer.
Thus, fixing the desired overload error probability as Pol ,
we may achieve the MSE distortion predicted by the test
channel from Figure 1 (characterized in Proposition 1) with a
scalar quantizer whose rate is I (U��

n ; U��
n + N��

n )+δ(Pol),

where δ(Pol) = O
(

log log
(

1
Pol

))
.

Let QR,σ 2(·) be a uniform quantizer with quantization step√
12σ 2 and 2R quantization levels, such that the quantizer

support is [−	/2, 	/2), where 	 � 2R
√

12σ 2, see Figure 5.
Our goal is to analyze the distortion and overload probability

2As discussed in Section I-B, one can try to limit the effect of overload
errors by placing various constraints on C(Z). Here, we restrict attention to
controlling the overload probability.

Fig. 5. An illustration of Q R,σ2 (·) for R = 2 and σ 2 = 1/3.

attained by a sigma-delta modulator that uses a QR,σ 2
��

(·)
quantizer, as a function of R and σ 2

��.
Clearly, if we employ the scalar sigma-delta modulator on a

long enough input sequence, an overload event will eventually
occur. As discussed above, the effects of overload errors can
be amplified due to the feedback loop, and in this case the
average MSE may significantly grow. We therefore split the
input sequence into finite blocks of length N , and initialize the
memory of the filter C(Z) with zeros before the beginning of
each new block. This ensures that the effect of an overload
error in the original system is restricted to the block where it
occurs.

Remark 4: In [11], the disastrous effect of overload error
amplification by the feedback loop was elegantly mitigated
by clipping the input to the quantizer, and feeding the quan-
tization errors of the clipped process to the noise-shaping
filter C(Z). This technique ensures that the system remains
stable, but requires to add an analog clipping component to
the sigma-delta modulator. Our treatment here follows the
“classic” sigma-delta modulation paradigm, which does not
include such a clipper. Therefore, we take the conservative
approach that assumes that once an overload error occurred
we can guarantee nothing about the fidelity of the system’s
output, and limit the effect of overload errors to at most N
samples, by operating in independent blocks.

The analysis is made much simpler by introducing a
subtractive dither [20]. Namely, let {Zn} be a sequence of
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Fig. 6. A sigma-delta modulator with a dithered scalar uniform quantizer. The input is assumed to be over-sampled at L times the Nyquist rate, and the dither

sequence {Zn} is assumed to be an i.i.d. sequence of random variables uniformly distributed over the interval

[
−

√
12σ 2

��/2,
√

12σ 2
��/2

)
and statistically

independent {X��
n }.

i.i.d. random variables uniformly distributed over the interval

[−
√

12σ 2
��/2,

√
12σ 2

��/2). In order to quantize U��
n , we add

Zn to it before applying the quantizer, and subtract Zn

afterwards, such that the obtained result is QR,σ 2
��

(U��
n +

Zn) − Zn . Adding and subtracting U��
n , we get U��

n +(
QR,σ 2

��
(U��

n + Zn) − (U��
n + Zn)

)
, and the quantization

error is therefore

Nn � QR,σ 2
��

(U��
n + Zn) − (U��

n + Zn) (23)

The main result in this section is the following.
Theorem 4: Let D be the MSE distortion attained by the

test channel in Figure 1 with a filter C(Z) of finite length, and
I (U��

n ; U��
n + N��

n ) the scalar mutual information between
the input and output of the AWGN channel in the same figure.
For any 0 < Pol < 1, the scalar sigma-delta modulator
from Figure 6 applied on a sequence of N consecutive source
samples with quantization rate R = I (U��

n ; U��
n + N��

n ) +
δ(Pol), where

δ(Pol) � 1

2
log

(
−2

3
ln

Pol

2N

)
. (24)

attains MSE distortion smaller than

D(1 + oN (1))

1 − Pol
,

given that overload did not occur, where oN (1) → 0 as N
increases, and the overload probability is smaller than Pol .

Proof: Let Q̃√
12σ 2Z

(x) be the operation of rounding x to

the nearest point in the (infinite) lattice
√

12σ 2Z. It is easy to
verify that for any x ∈ [−	/2, 	/2) we have

QR,σ 2(x) = Q̃√
12σ 2Z

(
x +

√
12σ 2

2

)
−

√
12σ 2

2
. (25)

Applying (23) therefore yields that if overload did not occur
in the nth sample, i.e., if |U��

n + Zn| ≤ 	/2, we have

Nn = Q̃√
12σ 2

��Z

(
U��

n + Zn +
√

3σ 2
��

)

−
(

U��
n + Zn +

√
3σ 2

��

)
. (26)

Dealing with the overload event of the quantizer directly is
rather involved. Instead, as done in [21], we first consider a
reference system with an infinite-support quantizer (R = ∞)

and analyze its performance. If the magnitude of the input
to the infinite-support quantizer never exceeds 	/2 within
the processed block, then clearly the reference system is
completely equivalent to the original system within this block.
Thus, it suffices to find the average distortion of the reference
system and the probability that the input to its quantizer
exceeds 	/2 within a block. In what follows we will therefore
assume that the quantization noise is given by (26) regardless
of whether or not |U��

n + Zn| ≤ 	/2, and account for the
overload probability later.

Assuming that the dither sequence {Zn} is drawn sta-
tistically independent of the process {X��

n }, the Crypto
Lemma, see, e.g. [20, Lemma 4.1.1], implies that {Nn} is an
i.i.d. sequence of random variables uniformly distributed over

the interval [−
√

12σ 2
��/2,

√
12σ 2

��/2), statistically indepen-

dent of {X��
n }. Note that Nn has zero mean and variance

σ 2
��. Following this reasoning, the reference sigma-delta

data converter depicted in Figure 6 (with an infinite-support
quantizer) is equivalent to the test channel from Figure 1

with N��
n ∼ Uniform

(
[−

√
12σ 2

��/2,
√

12σ 2
��/2)

)
instead

of N��
n ∼ N (0, σ 2

��). Thus, the average MSE distortion
attained by the reference scalar sigma-delta modulator from
Figure 6 is as given in Proposition 1 up to a multiplicative
factor of 1+oN (1) that accounts for edge effects. These effects
are the by-product of the operation of nulling the filter memory
at the beginning of each new block, which incurs temporal
non-stationarities. In particular, if the filter C(Z) has L taps,
then only after L samples within the block the statistics of
the process {U��

n } will converge to its stationary distribution.
However, if the block length is sufficiently large w.r.t. the filter
length and the inverse of the MSE distortion, the influence of
these effects vanishes.

Next, we turn to analyze the probability that an overload
error occurs within a block of length N , as a function of R
and I (U��

n ; U��
n +N��

n ). Since this event is equivalent to the
event that at the reference system some input to the quantizer
exceeds 	/2 in magnitude within the block, it suffices to upper
bound the probability of the latter event.

Assume the reference scalar sigma-delta modulator from
Figure 6 is applied to a vector x�� = [X��

1 , . . . , X��
N ] of N

consecutive samples of the process {X��
n }, where the memory

of the filter C(Z) is initialized with zeros. Define the event
OLk � {|U��

k + N��
k | > 	/2} and the event OL � ∪N

k OLk .



ORDENTLICH AND EREZ: PERFORMANCE ANALYSIS AND OPTIMAL FILTER DESIGN FOR SIGMA-DELTA MODULATION 1163

By the union bound, we have

Pol � Pr(OL) ≤
N∑

k=1

Pr (OLk). (27)

The random variable U��
k + N��

k = X��
k + (δk − ck) ∗

N��
k is a linear combination of a Gaussian random variable

X��
k and statistically independent uniform random variables

{N��
k }. In [22, Lemma 4] the probability that a random

variable of this type exceeds a certain threshold was bounded
in terms of its variance. Applying this bound to U��

k + N��
k

yields

Pr

(
|U��

k + N��
k | > 	/2

)

≤ 2 exp

{
− 	2

8E(U��
k + N��

k )2

}

= 2 exp

{
− 12σ 2

��22R

8
(
E(U��

k )2 + E(N��
k )2

)
}

,

where in the last equality we have used the definition of 	
and the fact that U��

k and N��
k are statistically independent.

Equivalently, we may write

Pr

(
OLk

)
≤ 2 exp

⎧⎪⎪⎨
⎪⎪⎩− 12σ 2

��22R

8σ 2
��

(
1 + E(U��

k )2

σ 2
��

)
⎫⎪⎪⎬
⎪⎪⎭

= 2 exp

⎧⎪⎨
⎪⎩−3

2
2

2

(
R−1

2
log

(
1+ E(U��

k )2

σ2
��

))⎫⎪⎬
⎪⎭

= 2 exp

{
−3

2
22

(
R−I

(
U��

k ;U��
k +N��

k

))}
, (28)

where we have used (5) in the last equality. Substituting (28)
into (27) gives

Pol ≤ 2
N∑

k=1

exp

{
−3

2
22

(
R−I

(
U��

k ;U��
k +N��

k

))}
. (29)

Note that E(U��
k )2 = σ 2

X + σ 2
��

∑k
m=1 c2

k is monotonically
nondecreasing in k and is given by (6) for values of k that
are greater than the length of the filter ck . We can therefore
further bound (29) as

Pol ≤ 2N exp

{
−3

2
22

(
R−I

(
U��

n ;U��
n +N��

n
))}

, (30)

where I
(
U��

n ; U��
n + N��

n

)
is as given in Proposition 1. To

summarize, we have shown that the reference system achieves
the same MSE distortion D as characterized by Proposition 1
up to a 1 + oN (1) multiplicative term, and that the probability
that one of the quantizer input samples exceeds 	/2 in
magnitude within a block of length N , is bounded by (30).
For our original system whose quantizer has finite support
of [−	/2, 	/2), this means that the overload probability is
also upper bounded by the right hand side of (30). Moreover,
the average distortion it achieves if overload did not occur is
the same as that of the reference system conditioned on the

event that OL did not occur. Denote this conditioned expected
distortion by DOL and the expected distortion conditioned on
the event that OL did occur by DOL. For the reference system,
we have

D(1 + oN (1)) = Pr(OL)DOL + Pr(OL)DOL ≥ Pr(OL)DOL,

and therefore

DOL ≤ D(1 + oN (1))

1 − Pol
.

This shows that the scalar sigma-delta system from Figure 6,
whose quantizer has limited support [−	/2, 	/2), with R =
I (U��

n ; U��
n + N��

n ) + δ achieves the same average MSE
distortion as the test channel from Figure 1 up to a multiplica-
tive factor of (1 + oN (1))/(1 − Pol), with block error prob-

ability smaller than 2N exp

{
−3

2
22δ

}
. Thus, Proposition 1

characterizes the rate-distortion tradeoff achieved by the scalar
sigma-delta system up to the aforementioned factor and a
constant rate penalty δ, that depends on the target overload
error probability. More precisely, for any 0 < Pol < 1, taking
the rate penalty as in (24) guarantees that the overload error
probability is smaller than Pol .

ACKNOWLEDGEMENTS

The authors thank Jan Østergaard and Ram Zamir, and the
anonymous reviewers for their valuable comments.

REFERENCES

[1] O. Ordentlich and U. Erez, “Performance analysis and opti-
mal filter design for sigma-delta modulation via duality with
DPCM,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 321–325.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[3] R. Zamir and M. Feder, “Rate-distortion performance in coding ban-
dlimited sources by sampling and dithered quantization,” IEEE Trans.
Inf. Theory, vol. 41, no. 1, pp. 141–154, Jan. 1995.

[4] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles
and Applications to Speech and Video. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1984.

[5] R. A. McDonald, “Signal-to-noise and idle channel performance of
differential pulse code modulation systems—Particular applications to
voice signals,” Bell Labs Tech. J., vol. 45, no. 7, pp. 1123–1151, 1966.

[6] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[7] C. C. Cutler, “Differential quantization of communication signals,”
U.S. Patent 2 605 361, Jul. 29, 1952,

[8] C. C Cutler, “Transmission systems employing quantization,”
U.S. Patent 2 927 962, May 8, 1960.

[9] S. Tewksbury and R. Hallock, “Oversampled, linear predictive and
noise-shaping coders of order N & gt; 1,” IEEE Trans. Circuits Syst.,
vol. CS-25, no. 7, pp. 436–447, Jul. 1978.

[10] M. S. Derpich, “Optimal source coding with signal transfer function
constraints,” Ph.D. dissertation, School Elect. Eng. Comput. Sci., Univ.
Newcastle, Callaghan, NSW, Australia, 2009.

[11] M. S. Derpich, E. I. Silva, D. E. Quevedo, and G. C. Goodwin,
“On optimal perfect reconstruction feedback quantizers,”
IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3871–3890,
Aug. 2008.

[12] R. Zamir, Y. Kochman, and U. Erez, “Achieving the Gaussian
rate–distortion function by prediction,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3354–3364, Jul. 2008.

[13] T. Guess and M. K. Varanasi, “An information-theoretic frame-
work for deriving canonical decision-feedback receivers in Gaussian
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 173–187,
Jan. 2005.



1164 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 2, FEBRUARY 2019

[14] J. Ostergaard and R. Zamir, “Multiple-description coding by dithered
delta–Sigma quantization,” IEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4661–4675, Oct. 2009.

[15] M. S. Derpich and J. Ostergaard, “Improved upper bounds to the causal
quadratic rate-distortion function for Gaussian stationary sources,” IEEE
Trans. Inf. Theory, vol. 58, no. 5, pp. 3131–3152, May 2012.

[16] P. Noll, “On predictive quantizing schemes,” Bell Labs Tech. J., vol. 57,
no. 5, pp. 1499–1532, May 1978.

[17] M. A. Gerzon and P. G. Craven, “Optimal noise shaping and dither of
digital signals,” in Proc. 87th Audio Eng. Soc. Conv., 1989.

[18] H. Spang, III, and P. Schultheiss, “Reduction of quantizing noise by use
of feedback,” IRE Trans. Commun. Syst., vol. 10, no. 4, pp. 373–380,
Dec. 1962.

[19] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data
Compression. Englewood Cliffs, NJ, USA: Prentice-Hall, 1971.

[20] R. Zamir, Lattice Coding for Signals Network. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[21] A. Ben-Yishai and O. Shayevitz, “Interactive schemes for the AWGN
channel with noisy feedback,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2409–2427, Apr. 2017.

[22] O. Ordentlich and U. Erez, “Precoded integer-forcing universally
achieves the MIMO capacity to within a constant gap,” IEEE Trans.
Inf. Theory, vol. 61, no. 1, pp. 323–340, Jan. 2015.

Or Ordentlich received the B.Sc. degree (cum laude) in 2010, M.Sc. degree
(summa cum laude) in 2011, and completed his PhD studies in 2015, all
in electrical engineering in Tel Aviv University, Israel. During the years
2015-2017 he is was a postdoctoral fellow in the Laboratory for Information
and Decision Systems at the Massachusetts Institute of Technology (MIT),
and in the Department of Electrical and Computer Engineering at Boston
University. He is currently a senior lecturer (assistant professor) in the School
of Computer Science and Engineering at the Hebrew University of Jerusalem.

Uri Erez (M’09) was born in Tel-Aviv, Israel, on October 27, 1971.
He eceived the B.Sc. degree in mathematics and physics and the M.Sc. and
Ph.D. degrees in electrical engineering from Tel-Aviv University in 1996,
1999, and 2003, respectively During 2003-2004, he was a Postdoctoral
Associate at the Signals, Information and Algorithms Laboratory at the
Massachusetts Institute of Technology (MIT), Cambridge. Since 2005, he has
been with the Department of Electrical Engineering-Systems at Tel-Aviv
University. His research interests are in the general areas of information
theory and digital communication. He served in the years 2009-2011 as
Associate Editor for Coding Techniques for the IEEE TRANSACTIONS ON

INFORMATION THEORY.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


