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Abstract—Recent work in machine learning community pro-
posed multiple methods for performing lossy compression (quan-
tization) of large matrices. This quantization is important for
accelerating matrix multiplication (main component of large
language models), which is often bottlenecked by the speed of
loading these matrices from memory. Unlike classical vector
quantization and rate-distortion theory, the goal of these new
compression algorithms is to be able to approximate not the
matrices themselves, but their matrix product. Specifically, given
a pair of real matrices A, B an encoder (compressor) is applied
to each of them independently producing descriptions with R bits
per entry. These representations subsequently are used by the de-
coder to estimate matrix product A" B. In this work, we provide
a non-asymptotic lower bound on the mean squared error of this
approximation (as a function of rate 1) for the case of matrices
A, B with iid Gaussian entries. Algorithmically, we construct
a universal quantizer based on nested lattices with an explicit
guarantee of approximation error for any (non-random) pair of
matrices A, B in terms of only Frobenius norms || A|r, | B|r
and |[AT B||r, where A, B are versions of A, B with zero-
centered columns, respectively. For iid Gaussian matrices our
quantizer achieves the lower bound and is, thus, asymptotically
optimal. In particular, we derive the rate-distortion function for
matrix multiplication of iid Gaussian matrices, which exhibits an
interesting phase-transition at R ~ 0.906 bit/entry. An extended
version of this paper is available in [1].

I. INTRODUCTION

Matrix multiplication is a key component of many numerical
algorithms, and is often the dominant factor in the runtime
of a program. With the surge of deep neural nets (DNNs)
and large language models (LLMs), finding more efficient
ways to perform matrix multiplication have become one of
the most pressing challenges. Classical work in this field
focused on minimizing the number of required operations [2]—
[S]]. Specifics of contemporary problems, however, require re-
thinking this classical approach to matrix multiplication. First,
in machine learning applications requirements for precision
of computing matrix products are quite lax. Second, modern
computational hardware is often bottlenecked by the memory
bandwidth. A natural solution explored by many researchers is
to apply lossy compression to matrices leading to deterioration
in precision but improvement in the amount of data transferred
between memory and computation cores.

We formalize this problem as follows. Consider a pair of
matrices A € R™% and B € R" " which need to be
described using R bits per entry (using separate compressors),
such that a decoder that obtains bit descriptions of both
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matrices can estimate AT B. The metric for gauging quality of
approximation th/at\ we will use is the squared error between
ab entries of ATB and AT B. Note that unlike classical
vector quantization, we are requiring compression algorithms
to be tailored to the special task of matrix multiplication. As
a practical motivation, in Section below we argue that
reducing R down to a few bits/entry is necessary for LLMs
to fully leverage modern matrix multiplication hardware.

A. Importance of quantization for modern applications

To set the stage for the problem, let us estimate what
level of quantization (in bits / entry) would be relevant for
today’s main consumer of matrix multiplications: the large
language models (LLMs). For those, quantization is typically
employed for accelerating inference. During inference LLM is
busy computing many products A" B of matrices with sizes
d x a and d x b respectively. This requires 2abd FLOPs and
ad + bd + ab entries to load/store from memory. Ideally,
we would want to quantize entries in such a way that all
compute is fully utilized. For that we need to know the
ratio ¢ of available FLOPs to available memory bandwidth,
a quantity known as “ops:bytes” of a processor. It ranges
from ¢ = 5...20 for modern CPUs (FP32 arithmetic via
AVX512) to £ =~ 300 for the fastest GPUs (FP16 on an H100
or B200). The quantization rate saturating compute should then
be bounded (in bits/entry) as
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It turns out that there are two stages of running inference
with LLMs: the pre-fill (when the input prompt is processed)
and the generation (when response tokens are sequentially
generated). During the pre-fill LLM we have a = d and b = L
(d is the so-called hidden dimension and L is the sequence
length), while during the generation we have a = L and b = 1
(the A matrix coming from KV-cache and B matrix being new
token’s embedding). Thus, to saturate the computation core,
we need
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We can see that during generation phase, on CPUs we would

want to approach 1-3 bits/entry, while on GPUs we will
not be able to ever saturate compute (that is, a decrease
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in quantization rate translates proportionally to decrease in
runtime). For the pre-fill phase, for large LLMs we get
Rpre-n > 16 bit (that is, just storing plain FP16 is already good
enough). Quantization during pre-fill might still be important
for “small” LLMs running on fast GPUs: for example, for
BERT [6] we have L = 512, d = 768 and £ = 300 (for an
H100), resulting in quantization rate R ~ 11.7 bit/entry.

B. Related work

Randomized linear algebra/sketching, and locality-sensitive
hashing (LSH) are techniques widely used in practice for
computing approximate inner products and approximate ma-
trix multiplications, as well as other operations, in reduced
dimensions. The figure of merit in these fields is typically the
tradeoff between the reduced dimension and the approximation
error, and many algorithms have been developed for addressing
different regimes, see e.g. [7]-[12]. Since the dimension of the
reduced matrix/vector is related to the number of bits required
for storing it, this body of work is relevant to our study. How-
ever, the tradeoff between the number of bits per dimension
and the total approximation error, and its dependence on the
properties of A, B and AT B is often subtle. Thus, there is
no immediate translation between the required dimension of
a sketch and the number of bits needed for representing it for
obtaining the required accuracy.

The topic of matrix quantization has received much attention
in the last decade in the context of DNNs and LLMs. The
goal here is to reduce the memory footprint of the weight
matrices, allowing to load them to the main memory using
less 10s, as well as speed up the multiplications and additions
operations by moving from floating point numbers to small
integers (and when possible, also sparsifying the matrices,
saving some operations altogether). Roughly speaking, one
can distinguish between two paradigms: quantization-aware
training, where the training procedure is designed to output
weight matrices with “cheap” representation [13], [14], and
post-training quantization, where the training procedure is
performed in high precision, and quantization of the weights
is only performed after training has terminated (perhaps with
some fine tuning afterwards) [15]-[22]. In order to further
speed up matrix multiplication, and reduce the number of
I0s needed for using KV-cache, some works also develop
quantizers for the activations [[16], [[18]-[20], [23]], while other
works assume the activations are kept in high precision [15],
[21]]. Quantization for DNNs and LLMs are typically evaluated
according to the end-to-end performance of the quantized ar-
chitecture, but often the Frobenius norm of the approximation
error is considered as the intermediate optimization criterion
for quantizing the weights at each layer [13]], [24].

To the best of our knowledge, there was very little work on
distributed compression for inner product/matrix multiplica-
tion in the information theory literature. Recently, Malak [25]]
studied the problem of lossless distributed compression of
binary random matrices for computing their product, and
derived non-trivial bounds under stringent assumptions on the
joint distribution. Some prior work considered the problem

of distributed compression of random vectors with the goal
of approximately computing a linear function of those vec-
tors [26]], [27]. In those works, the goal was to estimate,
say, the difference between the two vectors in R", which
is itself a vector in R™. While the inner product of these
vectors, which is a scalar in R, can be computed from their
difference (assuming their individual norms were encoded in
high resolution), it seems, a-priory, that distributed compres-
sion for inner product computation is an easier task. Our
results show that this is, in fact, hardly the case. Another
line of related work in the information theory literature, is
that of Ingber et al. [28] that considered the fundamental
limits of lossy compression of a database in order to support
approximate nearest neighbor search (see also [29] for a
practical implementation). We note in passing that much recent
work focused on coding for speeding up distributed matrix
multiplication by introducing redundancy for mitigating the
effect of “slow workers” (stragglers), see, e.g., [30]. This
line of work is not directly related to approximate matrix
multiplication via compression, studied in this paper.

II. MAIN RESULTS

Our main result shows existence of universal quantizers
(based on lattices) which compress A and B to R bits/entry
and come with explicit precision guarantees. Furthermore, we
also show that these guarantees cannot be generally improved
by proving a matching lower bound for the case of matrices A
and B with iid Gaussian entries. We emphasize, though, that
quantizers are universal and do not require Gaussian matrices.

To introduce our main results, let us define the function

F(R) = 1—(1—(2-272F" —274f)) L R < R
- 2'272R_274R RZR*
2)
where R* ~ 0.906 is the solution to the fixed-point equation
1
R= 510g2(1+4R1n2) 3)

It will turn out that I'(R) is distortion-rate function for the
matrix multiplication of iid Gaussian matrices.

We say that a matrix A € R™*™ has “M-bounded entries”
if |a; ;] € {0}U[M 1, M] for all i € [n],j € [m]. Our results
require the matrices A and B to have M -bounded entries, with
M = e°™)_ To be more concrete, throughout this paper we
take M = n'922990 In particular, this choice of M guarantees
that matrices represented in FP64 format have bounded entries.
This extremely mild condition guarantees that we can describe
the ¢> norm of each column of A, B with small multiplicative
error using o(n) bits. Let 1 = (1,...,1)T € R" be the all-
ones vector. For a column vector x € R™ we denote by = =
z — (£172) 1 its zero-centered version. For a matrix A =
[a1]---|ag] € R * we denote A = [ay]...|aq]. Our first
result is the following.

Theorem 1: For any € > 0 and sufficiently large n, there
exist randomized encoders f; : R"X@ — [2na8] f, . Rn*b



[2707], and decoder g : [27%F] x [270F] — R**? such that for
any A € R"*% and B € R"*® with bounded entries we have

E|ATB—g(fi(A), f2(B)|F < |IATB||% - (T*(R) +¢)

All%| B2
+W(I‘(R)—FQ(R)+€)+CL'5'H_8-

Remark 1: The full statement in [[I] of Theorem [T} as well
as that of Theorem (3| below, also treats the per-entry MSE
distortion, and the “one-sided” case where only A needs to be
quantized and B is given in full-resolution.

Our scheme operates by compressing each column of A
and B using the same (randomized) nested lattice quantizer
feol @ R™ — [27], which is applied repeatedly to every
column, whereas the decoder g simply estimates each column
to get matrices A and B and computes their scaled matrix
product; see Figs. [T and 2] The parameter x shown in Figures
is used by the encoders for time-sharing/sparsification and
is set to k = min{R/R*,1} in the Theorem. In particular,
for R < R* a fraction 1 — (%) of coordinates are ignored
(mapped to 0), corresponding to x = R/R*. As it turns
out, this dimensionality reduction (a la Johnson-Lindenstrauss)
turns out to be necessary to achieve asymptotically optimal
distortion.

To get a feel for Theorem [I] let us consider independent
matrices A and B drawn iid Gaussian A (0, 02). For large n,
such matrices have bounded entries and are also arbitrarily
close to their centered version, with high probability. We have
that EHATBH% _ ElAIZIBIZ _ ot

n
Theorem [I] shows estimate

E[|ATB — ATB|32] < o*nab(T(R) + ) .

- nab in this case and

It turns out that this is the best possible approximation (at this
compression rate), as shown in our next result.

Theorem 2: Let A € R™** and B € R™*? be independent
random matrices, with iid A(0,c?) entries. For any n > 1,
and any pair of rate-R encoders f; : R"*® — [2naft] £, .
R™*b — [27PF] and decoder g : [27F] x [270F] — R**P, we
have

E||ATB = g(fi(A), f2(B)|} = o* - nab-T(R).  (4)

In other words, the encoders fi, fo,¢9 from Theorem
attain the lower bound from Theorem [2] and are therefore
asymptotically optimal for this class of matrices.

We also show a simpler to use bound, based on our
compression scheme applied with no “MMSE scaling” and
no time-sharing - that is, with & = x = 1 in Figures[I] [2] The
resulting bound does not meet the lower bound of Theorem [2]
for Gaussian iid matrices. However, for moderate R it is
never much worse than the bound from Theorem [Il For some
matrices A, B it is significantly better than the bound from
Theorem [1}

Theorem 3: For any € > 0 and sufficiently large n, there
exist randomized encoders f; : R"X% — [2n8] f, . R?*b

[2707], and decoder g : [27%F] x [270F] — R**? such that for
any A € R"*% and B € R"*? with bounded entries we have

E|ATB = g(f1(A), f2(B))|%
JA[EIBIE (2-2*% -1 8
< o (221271)2""5 +a-b-n"°.

Note that the term ||AT B||2 does not appear at all in

— — A2 n|2
Theorem , and whenever ||AT B2 > % the error in
Theorem [3]is significantly smaller than the error in Theorem T}

The scheme used for proving Theorems [I] and [3] is based
on using high-dimensional nested lattices with some asymp-
totically optimal properties. Unfortunately, such lattices do
not lend themselves to efficient implementation. In the full
version [1]] we develop a simplified nested-lattice quantization
scheme, based on Conway and Sloane’s Voronoi codes [31]],
that is similar to the one used in the proofs of Theorem [I]
and Theorem [3 but uses low-dimensional nested lattices.
For such lattices, we suggest a fast implementation, whose
computational efficiency does not depend on R. This sim-
plified scheme attains performance fairly close to theoretical
estimates therein. In [32] it is illustrated that the fast imple-
mentation, which we refer to as NestQuant, attains state-of-
the-art result for quantized LLMs. Fast decoding algorithms
based on lookup-tables are further explored in [33].

Additional contributions of the full version [1] include the
following:

e We study the inner product case a = b = 1, in full
generality, assuming the entries of A are drawn iid from
distribution P, the entries of B are drawn iid from distri-
bution @, and the rates R; and Ro are not necessarily
equal. We derive several upper and lower bounds on
the smallest attainable distortion in computing the inner
product, and prove some results on the structure of the
optimal encoders and decoder.

o For the matrix multiplication case, when the entries of
A and B are drawn iid from a distribution P with zero
mean and variance o2, we show that @]) continues to hold
with T'(R) replaced by I'(R + D(P||N(0,5?)).

We refer the reader to [1]] for full details and proofs, and

only sketch the key ideas in Section [III}

III. SKETCH OF THE PROOF

This work started with the goal of trying to understand
approximate matrix multiplication for two matrices A and
B which are random, with iid Gaussian entries N (0,1). We
started by trying to solve the case of a = b = 1, i.e. when
AT B is simply an inner product of two iid Gaussian vectors.

Recall that the Gaussian distortion-rate function is D(R) =
2 2R, e.g. [34, Section 26.1.2]. A simple argument shows that
compressing A to A and B to B via rate-R optimal Gaussian
vector quantizer achieves error

E[(ATB— ATB)?| < ¢(D(R)),  ¢(x) =2z —a>.
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Fig. 1: Encoders for matrix multiplication. Each column of A is encoded by the same encoder, and each column of B is
encoded by the same encoder. The encoder used for columns of A and that used for columns of B are also the same, except
that for A we use the dither vector Z; € R"", whereas for B we use the dither vector Zs € R"". We illustrate the operation
of the encoders on the ith column of A, a; € R", and on the jth column of B, b; € R™. The block S corresponds to left
multiplication by the rotation matrix S € R™*", and the block Py,, corresponds to projecting the vector U; € R™ (respectively
V; € R") to R*™, k € % -{0,1,...,n}, by keeping only its first kn coordinates. Here,  is the time-sharing/sparsification
parameter, determining the fraction of coordinates in each vector that are actually “described” to the decoder. The lattices
A. C Ay C R are nested. The component @5, (+) is a lattice quantizer which maps a point in R*" to the closest lattice
point in Ay. The component modA. maps a point x € R*" to x — Qa, ( ) € V., where V, is the Voronoi region of A.. The
binary representation W, (respectlvely W, ) is an encoding of U, Uil € (A FNVe) = Ap/A. (respectively ‘73 (kn] € Ap/Ae)

using log |Ay/A.| bits. The scalars ,1Ta“ ||a1H (respectively, 1T, +17Tb;, Hb ) are high-resolution descriptions of 11 7a;, [|a||
(respectively, +17b;, ||b;])), which require only O(logn) bits. The dither vectors 71, Z> must be known to the decoder. They
can be randomly drawn by the encoders and decoder and require sharing randomness between them (in practice, we just store
random seed with the matrices). The matrix .S need not be known by the decoder. The operations marked in red corresponds to
zero-centering the column vectors, and may be avoided altogether. The effect of avoiding those operations on the performance
is replacing A with A and B with B in the MSE upper bounds in Theorems [1| and

i,[kn]
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Fig. 2: Decoder for the matrix multiplication problem. We illustrate the estimation of (A" B);;. The component A /A .-decoder
maps log [Ay/A.| bits to points in Ay NV, C R™, where V. is the Voronoi region of the lattice A.. The component (-, -)
computes the inner product UZ [W]VJ [xn]> and a € [0,1] is a (MMSE-like) scaling coefficient. The operation marked in red
need only be implemented if the encoders implemented the corresponding zero-centering operations marked in red in Figure 1

Note that we can estimate the entire product AT B by first decoding A = [U1 OIS |Ua [xn)] and B = [V1 OIS |V17 [kn]]s
computlng the matrix aATB and then computing its Kronecker product with the Iglk\l mﬁgg N whose ijth entry is
Ny =2 ||at||||b ||, and adding to it the rank 1 matrix y whose ijth entry is pu;; =n- =1Ta; - +17b;.



It turned out that the function ¢(D(R)) is monotonically
decreasing but not convex. Thus, via time-sharing one can
achieve a lower convex envelope of ¢(D(R)), which turns
out to be the I'(R) function defined in (2).

We next proceed to lower bounds on distortion or, equiv-
alently, to lower bounds on rate R required for the existence
of encoders f1, fo and decoder g satisfying

E[(g(f1(A), f2(B)) —

A simple oracle bound (by revealing B to the decoder) shows
that rate R cannot be smaller than the standard Shannon
rate-distortion function of A. However, this bound leaves a
wide gap with the achievability bound given above. Next,
by a standard data-processing argument (and observation that
encoders for A and B can be without loss of generality be
taken identical) we deduce that (3 requires rate

§j¢ ©6)

where A ~ N(0,I,,), infimum is over all R™-valued random
variables A and {);} are the eigenvalues of Cov(A|A). This
reduces inner product quantization to an optimization of a
multi-letter mutual information. Notice that the distortion
constraint is no longer separable, and hence the standard
single-letterization (e.g. [34, Theorem 24.8]) does not work
and the limit on the right-hand side is not possible to evaluate.
For the special case of Gaussian distribution of entries of A
we were able to single-letterize the expression on the right-
hand side of (6, showing that left-hand side of (6) evaluates
to I'~*(D). Putting both upper and lower bounds together, we
conclude that optimal compression rate for the iid Gaussian
inner product problem is thus given by I'"1(D).

We next proceed to solving the matrix case. Luckily, it turns
out that for Gaussian iid matrices, again, the optimal com-
pression for matrix multiplication of AT B is asymptotically
achieved by compressing each column separately via the use
of optimal inner product quantizers.

Having solved the iid Gaussian case, we proceed to analyz-
ing general (non-random) matrices and vectors. Specifically,
for the inner product problem we first normalize each of
the two vectors to have norm +/n and these norms are
compressed using a separate high-resolution scalar quantizer.
Next, normalized vectors are multiplied by a common random
orthogonal matrix. This makes each resulting vector uniformly
distributed on the sphere of radius +/n, while their inner
product is unchanged. As is well known, a high-dimensional
vector that is uniform on the sphere is very similar to an iid
Gaussian vector (for example, in terms of joint distribution
of small O(y/n)-sized subsets). Thus, we reduce the problem

to (3) except this time A;,B; < N (0, (ll) p)

ATB)?*] <nD 5)

R > limsup — mf{I A; A)

n— oo

1) where

p= %. This slight change creates a crucial complication
compared to the previous case of p = 0.

Indeed, suppose we are only tasked with quantizing B and
A is given to the decoder undistorted. Because of dependence

between two terms in the product AT (B — B) we have to
recourse to something like Cauchy-Schwarz, yielding

E[(ATB ~ ATB)* <E[|A|*||B — B|*] = (n®).

Thus, using “black box” quantizers for A and B only yields
n? performance guarantees violating (5). This is where lattice
quantization comes in. Specifically, using the idea of dithering
we can make a (randomized) quantizer whose quantization
error (B — B) becomes independent of B and A.

In order to guarantee finite quantization rate, we also need
to “truncate” the infinite lattice, for which we use another
key idea: a “good” nested lattice quantizer as in [35]—[37].
However, due to the nature of the problem we require construc-
tion of nested lattice pairs that satisfy stronger conditions than
were known from prior work. In particular, building upon the
heavy-lifting in a recent [38|], we show that for most lattices
the spectrum of the quantization error is nearly “white”, in
a suitable sense. Overall, we construct quantizers for inner
product problem of non-random vectors with a reconstruction
error that depends only on the inner product between the
vectors and their individual ¢ norms. Since the performance
bounds coincides with the lower bound for the iid Gaussian
case, it turns out that the resulting quantizers are optimal and
generally cannot be improved (except, possibly, in terms of
finite-n performance). Together these steps complete proof of
the main results quoted above.

Remark on e-nets and randomization via rotation (and
dithering). We believe that the effect of randomization is
crucial to our construction. Indeed, consider the special case
of a = b = 1 and vectors A, B constrained to be norm
lAll = ||IB|| = +/n. Suppose for simplicity that vector B
is allowed to be quantized at infinite rate and we are only
interested in quantizing A to nR bits. With this budget, the
standard idea would be to create an O(+/n)-net covering the
v/nS" ! and set A to be the nearest neighbor in this net.
What performance can this scheme guarantee? Since A and
B can be arbitrary the best we can do to is a Cauchy-Schwarz
estimate

(ATB—ATB)* <||A— AJ?|B|* = n®

Thus, whereas our lattice quantizer yields guarantee O(n) on
quadratic error for the inner product, the trivial e-net argument
(even with B given for free) only yields n? bound. As we
described above, the key benefit of rotation, complemented
by dithering, is making A — A a zero-mean vector.
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