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Cyclic-Coded Integer-Forcing Equalization
Or Ordentlich and Uri Erez

Abstract—A discrete-time intersymbol interference (ISI)
channel with additive Gaussian noise is considered, where only
the receiver has knowledge of the channel impulse response. An
approach for combining decision-feedback equalization with
channel coding is proposed, where decoding precedes the removal
of ISI. The proposed approach involves equalizing the channel
impulse response to a response with integer-valued coefficients
in conjunction with utilizing cyclic block codes. Leveraging the
property that a cyclic code is closed under cyclic integer-valued
convolution allows us to perform decoding prior to applying
decision feedback. Explicit bounds on the performance of the
proposed scheme are derived.

Index Terms—Combined equalization and coding, cyclic codes,
decision-feedback equalization (DFE), intersymbol interference
(ISI), linear Gaussian channels, single-carrier modulation.

I. INTRODUCTION

T HE discrete-time intersymbol interference (ISI) channel
with additive Gaussian noise is one of the most basic

channel models arising in digital communications. Thus,
considerable effort has been devoted to developing effective
transmission schemes for this channel; see, e.g., [1], for a
comprehensive survey. The channel is described by

(1)

where is the ISI resulting from other data symbols, and
is additive white Gaussian noise (AWGN) with zero mean and
unit power.

The channel model may further be characterized by the avail-
ability of channel state information (CSI), where we distinguish
between the case where CSI is available to the transmitter and
the receiver alike and the case where CSI is available to the re-
ceiver only. As we next briefly recall, while the distinction be-
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tween these two cases does not make a great difference at high
signal-to-noise ratios (SNR) (which is the main focus of this
paper) in terms of capacity [2] (i.e., whether water-filling may
be performed or not), it is of significant consequence for the de-
sign and implementation of equalization and coding schemes.

In the past decades, coding for AWGN channels has reached
an advanced state, and practical coding schemes (e.g., turbo and
LDPC codes) operating near capacity are known. It is thus desir-
able to combine AWGN coding and decoding techniques with
equalization in a modular way, with the aim of approaching the
capacity of the ISI channel.

The multitude of approaches developed to achieve reliable
communication over the ISI channel may be roughly divided
into two classes: multicarrier approaches and single-carrier ap-
proaches. Both approaches may in principle be used to operate
at rates close to the capacity of the ISI channel, but offer dif-
ferent practical tradeoffs as we briefly touch upon next.

In multicarrier transmission, the ISI channel is transformed
into a set of parallel AWGN subchannels, each subchannel cor-
responding to a different frequency bin and experiencing a dif-
ferent SNR. This approach has the advantage that the subchan-
nels are ISI free, and thus the problems of equalization and
decoding are decoupled. However, it has some drawbacks: the
alphabet of the transmitted symbols is essentially continuous,
which in turn makes the approach inapplicable to some media. A
related and even more restricting phenomenon associated with
multicarrier transmission is that it results in a high peak-to-av-
erage power ratio which may also be undesirable (see, e.g., [3],
[4]). Furthermore, when CSI is available only at the receiver,
bit allocation is precluded, and channel coding and decoding
become more difficult, due to the variation of the SNR across
subchannels.

Single-carrier approaches try to eliminate most of the ISI
without severely increasing noise power. The simplest ap-
proach is that of linear equalization (LE), consisting only of
a “feed-forward” equalizer (FFE), which roughly transforms
the channel into an additive colored Gaussian noise channel,
where the minimum mean-squared error (MMSE) criterion
corresponds to (linearly) maximizing the signal-to-interfer-
ence-plus-noise (SINR) at the “slicer”. Performance may be
improved using (nonlinear) decision-feedback equalization
(DFE), in addition to FFE. Specifically, MMSE-DFE will be
discussed in greater detail in Section II. In fact, as shown by
Guess and Varanasi [5], the MMSE-DFE architecture is optimal
in the sense of attaining mutual information, and allows us to
approach capacity with AWGN encoding/decoding, if decisions
(fed to the DFE) are based on codewords rather than symbols.
See also [6]–[8].

Unfortunately, the Guess–Varanasi approach, while quite
pleasing from a theoretical perspective, requires long inter-
leaving as well as long zero padding, which in turn incurs long
latency. This drawback can be avoided if CSI is available at
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the transmitter by employing Tomlinson–Harashima precoding
([9], [10], see also [2]), which essentially moves the DFE
to the transmitter. However, precoding is inapplicable if the
transmitter has no knowledge of the channel.

The approach proposed in this paper allows us to avoid error
propagation without incorporating an interleaver and requires
CSI to be available at the receiver only. In essence, the proposed
method enables us to perform block decoding before decision
feedback is performed.

We build on the integer-forcing (IF) equalization approach,
which was recently proposed [11] in the context of general
MIMO channels with CSI available at a receiver only. In this
approach, multiple streams are encoded using an identical
linear code and the receiver equalizes the channel matrix to any
full-rank integer matrix rather than to the identity.

In the context of IF equalization, an ISI channel may be
viewed as a Toeplitz matrix. This special structure allows us to
further replace the multiple codewords (in the context of ISI,
this number would be large) with a single codeword provided
that the linear code is further a cyclic code.1

This paper is organized as follows. Section II recalls some
basic results on single-carrier equalization. Section III describes
IF equalization as well as the general architecture of the pro-
posed scheme. Section IV derives the criterion for choosing the
FFE. Section V derives bounds on the noise enhancement in-
duced by the FFE. In Section VI, the performance of the scheme
is analyzed, and some examples are given. Section VII discusses
practical coding techniques for IF equalization at high transmis-
sion rates. This paper concludes with Section VIII.

II. PRELIMINARIES

We briefly review basic single-carrier equalization architec-
tures. In the sequel, we use -transform notation for sequences;
i.e., a sequence is represented by its -transform

. For example, the channel (1) may be expressed as

The simplest criterion for LE is that of zero forcing (ZF), where
the ISI is completely canceled using an FFE only. This corre-
sponds to taking the front-end (linear) filter to be

resulting in the equalized channel response . The
induced noise enhancement can be large, especially when
has zeros near the unit circle. A variant that takes into account
both ISI and noise enhancement is the linear MMSE equalizer

The MMSE-LE suffers from smaller (and in particular bounded)
noise enhancement while allowing some residual ISI. The
MMSE criterion is equivalent to maximizing the SINR at the
slicer [7].

1The crucial element needed is that the code is linear and shift invariant, not
necessarily cyclic.

DFE (see Fig. 1) is based on using previously detected sym-
bols in order to cancel the induced ISI from the symbol entering
the slicer. In this approach, if all previous data symbols are de-
tected without error, then postcursor ISI can be removed. Specif-
ically, the output of the FFE in Fig. 1 is given by

where is the equivalent channel after the operation of the
FFE and where without loss of generality we have assumed that
the FFE normalizes to equal 1. The DFE then subtracts the
term from , where are deci-
sions on past transmitted symbols, giving rise (assuming correct
past decisions) to the equivalent channel

(2)

When using the optimal FFE and DFE, the induced channel (2)
is an additive white noise channel with the same capacity (as-
suming the input is i.i.d. Gaussian) as that of the discrete
ISI channel (1) (see [7]). Combining DFE with coding, how-
ever, is a nontrivial task. Since a decision on the value of the
last symbol must enter the feedback loop at every time in-
stance, there is an intrinsic tension with the latency required for
channel coding. Many approaches have been suggested in order
to overcome this obstacle (see, for example, [12]–[18]), but to
the best of our knowledge none of them allow us to exchange
the order of decoding and ISI removal which is the aim of this
study. Doing so directly addresses the basic problem of ensuring
that reliable decisions enter the DFE loop.

III. COMBINING CYCLIC CODES WITH IF EQUALIZATION

We begin this section with a high-level overview of the pro-
posed IF equalization scheme in the context of ISI channels.
The crucial element of the scheme is using a code with a struc-
ture that matches that of the channel. Specifically, we would like
to use codebooks that are closed under convolution with an in-
teger-valued filter. Rather than pursuing this avenue directly, we
utilize the class of extensively studied cyclic codes which are
closed under cyclic convolution with an integer-valued filter re-
duced modulo some constant.

Definition 1: A linear block code of length over the ring
is called cyclic, if for every codeword , all cyclic shifts

of are also codewords in .
Define the modulo operation

mod

where is the unique integer such that .
In this paper, we identify the elements of with the points

, and the arithmetic operations of with
real addition and multiplication modulo- .

The linearity of the cyclic code implies that any sum
modulo- of two codewords is a codeword. As a consequence,
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Fig. 1. Decision-feedback equalization.

Fig. 2. High-level schematic description of an IF-DFE system (assuming � � �).

when a codeword is multiplied modulo- by an integer, the
result is also a codeword from the same code. The cyclic
property of the code ensures that any cyclic shift of a codeword
is also a codeword. Since a cyclic convolution modulo- of a
codeword with an integer-valued filter is nothing more than
a sum modulo- of cyclic shifts of the codeword multiplied
modulo- by integers, the result is a codeword from the cyclic
code. We denote cyclic convolution w.r.t. block length by

. The following proposition expresses the closure property of
a cyclic code w.r.t. cyclic convolution modulo- .

Proposition 1: Let be a cyclic code of length over .
Then for any vector of length with integer entries

mod

That is, is closed under integer-valued cyclic convolution
modulo- .

Remark 1: Note that Proposition 1 heavily relies on the iden-
tity between addition and multiplication in and addition and
multiplication of integers (over the reals) modulo- . For non-
prime Galois fields such a relation does not hold, and therefore
cyclic codes over nonprime Galois fields do not satisfy Propo-
sition 1, and are not suitable for IF equalization. Nevertheless,
cyclic codes that are defined over are suitable for IF equal-
ization even when is not prime. An example of such a code,
which is based on a binary cyclic code, is given in Section VII.

An IF equalizer (depicted in Fig. 2), rather than attempting to
cancel most of the ISI (as in LE as well as DFE), ensures that
the output of the FFE, which consists of both the desired signal
and the ISI, can be decoded. Then, the transmitted codeword
is recovered from the decoded noise-free signal. The closure

property of cyclic codes w.r.t. integer-valued cyclic convolution
modulo- suggests an approach for achieving this objective. The
transmitter sends a codeword from a cyclic code. The receiver
uses the FFE for equalizing the channel’s impulse response to
an impulse response , such that all the coefficients of
are integers. As a result, the induced channel at the output of
the FFE performs integer-valued convolution with the channel’s
input (ignoring the additive noise for the moment). This integer-
valued convolution is made cyclic using a simple manipulation
on the transmitted data. Reducing the FFE’s output modulo-
results in cyclic convolution modulo- of a codeword from a
cyclic code and an integer-valued filter, which yields a codeword
from the same cyclic code due to Proposition 1. This codeword
can be decoded in order to eliminate the Gaussian noise. The
original transmitted codeword can then be recovered using a
DFE.

A. Related Work

IF equalization is related to lattice reduction which is a
low-complexity detection scheme for MIMO channels where
a PAM (or QAM) constellation is used for each one of the
transmitted streams. Lattice reduction, originally introduced
by Yao and Wornell [19] (see also [20]), is based on the
observation that rather than directly detecting the PAM con-
stellation points transmitted over each stream, one can first
detect integer-valued linear combinations of these points and
then recover the original points by solving a set of linear
equations. For many channels this, essentially linear, approach
significantly outperforms ZF-LE and successive interference
cancellation (which is a common term for DFE over MIMO
channels). IF equalization for MIMO channels, introduced
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by Zhan et al. [11], extends lattice reduction to coded trans-
mission, where the PAM constellation is replaced by a single
linear code which is used to encode each one of the streams.
Accordingly, instead of decoding the transmitted codewords,
the receiver aims to decode modulo-reduced integer-valued
linear combinations of these codewords. The linearity of the
codebook that is used for transmission of all streams ensures
that these modulo-reduced linear combinations are codewords
from the same linear codebook as well.

In [21], a connection between lattice-reduction and partial-re-
sponse signaling for ISI channels (see, for example, [22]) was
drawn. In particular, it was shown that equalizing the channel
impulse response to an integer-valued one has several advan-
tages, the most prominent of which is reducing the amount of
CSI needed at the transmitter in order to perform precoding. The
main contribution of our work is in combining cyclic codes with
IF equalization for ISI channels. The improvement w.r.t. [21] is
in showing that when cyclic codes are used, the DFE can be im-
plemented at the receiver without suffering error propagation,
and hence precoding is not necessary.

B. Detailed Description of IF Equalization

For simplicity of exposition, we limit ourselves in the sequel
to real-valued channels (and transmission of real symbols). The
extension of the proposed scheme to complex transmission is
straightforward, and, unless stated otherwise, all results derived
in this study hold for the complex case as well. Further, we only
describe the ZF-IF approach which is suitable for the high SNR
regime. As will be clear in the sequel, this is the regime where IF
equalization is most effective. We now describe the operations
taken by the transmitter and the receiver in our scheme.

Transmitter:
Encoding: The transmitter uses an linear cyclic code-

book which is defined over the ring . Any linear code can be
represented in a systematic form where the redundancy symbols
appear at the beginning of the codeword, and the information
symbols at the end of the codeword. We use such a representa-
tion for our encoder. The transmitter constructs each one of its
message vectors using (the parameter will be de-
fined later) symbols from followed by zeros, resulting
in message vectors of length . Each such message vector is
encoded, and due to the systematic manner of the encoder the
resulting codeword ends with zeros. This zero-padding
procedure serves several purposes, as will be explained in the
sequel. The transmission rate is

We refer to the codeword produced by the encoder as
Meeting the Power Constraint: The encoder’s output is an
-dimensional codeword, each element of which belongs to the

constellation . Since this constellation is
not power-efficient, before transmitting the codeword over the
channel, the transmitter shifts and scales it to

For example, if each element of the codeword is mapped
to . If the elements of the codeword are uniformly
distributed over , this mapping ensures that2

Receiver:
Feed-Forward Equalization: The front-end of the receiver is

an FFE

(3)

which equalizes the impulse response of the channel to a
causal integer-valued impulse response of length (recall that

dictates the length of the zero padding)

We denote the vector of integer-valued coefficients of by

The output of the FFE is

where is colored Gaussian noise
with zero mean and variance

Note that taking is a special case in which the IF
equalizer reduces to a ZF-LE one. In most cases, choosing
otherwise results in smaller noise enhancement. The criterion
for determining the feed-forward filter for the IF equalizer will
be given in Section IV.

Receiver:
Scaling, Adding Offset, and Modulo Reduction: We would

like to bring the output of the FFE into the form

mod (4)

where is the -transform of , and is the additive
colored Gaussian noise. To that end, the receiver multiplies the
FFE’s output by

and adds a factor of

where we define as a causal sequence of ones

2Assuming � � � , the effect of the zero padding on the average transmis-
sion power is negligible.
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Fig. 3. Illustration of the equivalence between a linear convolution � � � and a cyclic convolution ��� ��mod� when the last � � � entries of � are zero. In
this example, ���� � � � �� �� and � � 	.

Finally, the obtained signal is reduced modulo- which yields

mod

mod

mod

where .
The zero padding at the transmitter guarantees that the last

entries of each codeword are zeros. This has three desir-
able effects: first, as illustrated by Fig. 3, it ensures that the first

entries of the linear convolution modulo- between and
are equal to the cyclic convolution mod , where with a
slight abuse of notation when participates in a cyclic convolu-
tion we assume it is padded by zeros such that its length
is . Second, the zero padding decouples different blocks of
codewords by “clearing” the channel’s memory and ensuring
that there is no ISI between different blocks. Finally, the zero
padding helps to recover the transmitted codeword as will be
described in the sequel.

Let be a vector consisting of the
first samples of the equivalent channel’s output. We have

mod

where consists of consecutive samples of the process .
Due to the distributive law of the modulo operation, can be
rewritten as

mod mod

mod (5)

where mod due to Proposition 1. Thus,
is the output of an induced modulo-additive colored Gaussian
noise channel with the codeword as input.

Decoding: In this step, enters a decoder that outputs an
estimate for the codeword . We discuss the properties of the
codebook that ensure a small error probability in decoding
in Section VI. In general, off-the-shelf cyclic codes over that
perform well over an AWGN channel will perform well on the
induced channel as well, in the high-SNR regime.

Recovering the Transmitted Codeword From the Decoded
Codeword: After decoding mod , we would like
to recover the original codeword from it. Note that can be
thought of as the output of a noise-free modulo- ISI channel,
with input and channel impulse response mod . Therefore,
it is possible to apply a modulo- DFE for recovering from

. Since the last symbols of are known (i.e., they are
all zeros), the DFE can be initialized with these values.

For simplicity of the DFE operation, it is convenient to restrict
the filter to be monic. This restriction does not imply a
great loss of generality, as the optimal choice of is in most
cases monic anyway.

Remark 2: We note that recovering is possible even if
as long as is invertible, i.e., if there exist an integer such

that mod . In this case, the receiver can first compute

mod mod

and then apply the DFE with the monic filter mod on .
In fact, if is a prime number, one can recover for any choice
of , since each entry of mod is either zero or invertible, and
at least one of the entries is invertible.3 Assume the first nonzero
entry of mod is . Then, the receiver can cyclicly shift by

places, and then apply a DFE with the filter
on the cyclicly shifted .

The complete IF equalization system is depicted in Fig. 4.
We end this section by remarking that the recently proposed

“signal codes” [23], though not cyclic, are also suitable for IF
equalization. Signal codes are a special family of lattice codes
which are linear shift-invariant over the reals. In [23], it is
demonstrated that these codes can operate reasonably close to

3Otherwise, all entries are multiples of �, and better performance can be ob-
tained using the integer-valued filter ������.
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Fig. 4. Detailed description of an IF-DFE system (assuming � � �).

capacity with an acceptable complexity. Therefore, this class
of codes may be attractive for IF equalization.

IV. CRITERION FOR CHOOSING THE TARGET INTEGER

CHANNEL FILTER

We wish to find an integer-valued filter of length
smaller than (or equal to) such that the noise enhancement
experienced by the ZF-IF equalizer for a given channel is
minimized.4 We denote the variance of the noise process
at the output of the IF front-end filter (3) by ,
which is given by

(6)

Denote
(7)

Thus, is an autocorrelation sequence (and in particular
as we assume to be real).
By straightforward algebra, (6) may be written as a quadratic

form

where is the positive semidefinite Toeplitz matrix

...
...

...
. . .

...

Let be any matrix satisfying

We therefore have

(8)

Equation (8) implies that finding the optimal (ZF) in-
teger-valued filter of length smaller than (or equal

4In fact, we would like to minimize the variance of ����, but since it is just
a scaled version of the process �����, the two problems are equivalent.

to) is equivalent to finding the shortest vector in the lattice
, which is composed of all integral combinations of the

columns of , i.e.,

(9)

We note that in [21] a criterion for finding the optimal ZF-IF
monic filter was established. Although the formulation of
the criterion of [21] is different from that presented here, it can
be verified that the two criteria are identical. This follows by
noting that the optimization problem in [21] amounts to finding
the shortest vector in a lattice spanned by a matrix that sat-
isfies .

Finding the shortest lattice vector is known to be NP hard, but
fortunately efficient suboptimal algorithms for finding a short
lattice basis are known. An important representative of this class
of algorithms is the celebrated LLL algorithm [24], which has
polynomial complexity and usually gives adequate results in
practice. In order to find a “good” integer-valued filter , we
may therefore apply the LLL algorithm on . The algorithm’s
result is a new basis (of short vectors) for . We then need to
find the shortest vector in this basis and choose .
In the next section, we derive an upper bound on the induced
noise enhancement when the true (optimal) shortest vector of
the lattice is used, which serves as a useful benchmark.

V. UPPER BOUNDS ON THE NOISE ENHANCEMENT OF OPTIMAL

ZF-IF EQUALIZATION

We now upper bound the noise enhancement induced by op-
timal ZF-IF equalization. Throughout this section, we assume
that the channel has a finite-length impulse response of length

, i.e.,

Definition 2: We define the noise variance at the output of the
FFE (3) when the optimal filter with length smaller than
(or equal to) is used, by
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For an optimal filter of arbitrary length, the noise variance
is therefore

We proceed to upper bound and
using known results from the theory of lat-

tices, and the theory of Toeplitz matrices.

Definition 3: We define to be the length of
the shortest vector in the lattice , as was defined in
Section IV. Namely

Lemma 1: (Minkowski) If is of rank , then

where is the constant of proportionality of the volume of an
-dimensional ball, i.e., the volume of an -dimensional ball

with radius is given by .
Proof: See, e.g., [25].

The constant can be bounded by (see, e.g., [26])

Recalling that , we thus have

(10)

where

(11)

In Section IV, it was shown that

Therefore, for any value of we have

(12)

Obviously, allowing for a longer filter enlarges the optimization
space and can only result in smaller noise enhancement. Thus,

is monotonically nonincreasing in . Never-
theless, the r.h.s. of (12) is not monotone in . For this reason,
a tighter bound is obtained by taking the minimum of the r.h.s.
over all possible values of

(13)

Allowing for arbitrary in (13) gives

(14)

The bounds (13) and (14) give little insight about the loss of IF
equalization w.r.t. the optimal performance. Fortunately, using

results from the theory of Toeplitz matrices, it is possible to give
a closed-form upper bound on . As a consequence,
insightful expressions can be obtained. To that end, define

(15)

where are the maximum-phase zeros of
(i.e., the zeros outside the unit circle).

The next result is due to Grenander and Szegö, and the proof
of which can be found in [27, Chapter 5].

Lemma 2: Let be a polynomial of
degree . Further, let be as defined in (7). Then for every

where is defined in (15).
Lemma 2 may be extended to an inequality which holds for

any , as stated by the following corollary.

Corollary 1: Let be a polynomial of
degree . Further, let be as defined in (7). Then for every

(16)

where is defined in (15).
Proof: For the case , inequality (16) fol-

lows directly from Lemma 2. Therefore, it suffices to consider
the case . Define the (stationary) noise process

and note that is the autocorrelation
function of this process, and is the autocorrelation matrix of

consecutive samples of this process. Let be the minimum
mean squared one-step prediction error of the th sample of the
noise process, , from the samples . For
all , we have (see, e.g., [2])

(17)

It is well known [28] that

(18)

Thus, for

(19)

Substituting the exact expression for which is given
by Lemma 2 establishes the desired result.

We are now ready to present Theorem 1 which is the main
result of this section.

Theorem 1: Assume that the channel has a finite-length im-
pulse response . For an optimal choice of
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the integer filter (of arbitrary length), the noise power at
the output of the filter is bounded by5

(20)

where is defined in (11), is defined in (15), and

(21)

Proof: Corollary 1 may be rewritten as

(22)

where , given by (21), is the variance of the AWGN
after the optimal FFE is applied in ZF-DFE (see, e.g., [7]). Sub-
stituting (22) into (13) yields

(23)

Allowing for arbitrary in (23) results in (20) which proves the
theorem.

The additional noise enhancement caused by the ZF-IF equal-
izer w.r.t. an optimal ZF-DFE as bounded in (20) consists of two
factors: and . The factor is greater than (or
equal to) 1 and tends to 1 as . On the other hand, the
factor is (approximately) linearly increasing with . The
minimization in (20) strikes a balance (i.e., searches for the op-
timal tradeoff) between these two factors.

The tightness of the bound depends on the tightness of the
Minkowski bound of Lemma 1. It is known that there exist lat-
tices of small dimensions for which this bound is rather tight.
Nevertheless, for “most” lattices the shortest lattice vector is
much shorter than what this bound predicts. In fact, the tight-
ness of the Minkowski bound for a certain lattice is related to
the “goodness” of that lattice for sphere packing [26]. We fur-
ther note that the family of lattices considered in this paper is
not general, as is a Toeplitz matrix, and therefore the
Minkowski bound may always be loose, as we further discuss
in Section VI.

VI. PERFORMANCE OF ZF-IF EQUALIZATION

The capacity of the Gaussian ISI channel (1) at high SNR is
given by (see, e.g., [7])

(24)

where was defined in (21), and where as
. Note that (24) is valid only for channels for which

is finite, i.e., for channels satisfying the Paley–Wiener
condition (see [2]).

In this section, we analyze the total gap-to-capacity of the
ZF-IF equalization scheme at high SNR, i.e., the gap between

5For (complex) transmission over a complex channel, (11) changes to

���� �
��

��
� ������� �

the performance obtained using ZF-IF and the optimal perfor-
mance (24).

The ZF-IF scheme, as described in Section III, transforms the
original Gaussian ISI channel into the induced modulo-additive
colored Gaussian noise channel (5). For the analysis in this sec-
tion, it is convenient to scale by a factor of , resulting in

mod (25)

where consists of consecutive samples of a colored
Gaussian noise process with variance

(26)

As we recall, correct decoding of ensures correct reconstruc-
tion of .

In order to analyze the performance limits of the induced
channel, we lower bound the average mutual information

between its input and output. The average mutual information
corresponding to a certain distribution on the channel’s input
gives the highest possible rate for reliable communication,
when a random channel code which is drawn according to that
distribution is used [29]. However, the input to the induced
channel (25) is confined to be a cyclic code (as opposed to a
random code), and thus the average mutual information may
never be achieved. Nevertheless, the average mutual infor-
mation is a useful metric for the performance of ZF-IF if we
account for the possible loss of rate due to the use of a cyclic
code.

The channel (25) is a modulo-additive colored Gaussian noise
channel, where the variance of the noise is . The mutual
information between the input and output of such a channel
is maximized by a uniform memoryless distribution over the
modulo interval. If has a memoryless uniform distribution
over , then has a memoryless uniform distribution over
the set . For large , approaches
a memoryless uniform distribution over the interval , and
consequently, the distribution of approaches a uniform mem-
oryless distribution over the same interval. Let be a
Gaussian random variable with zero mean and variance . In
the limit of , we therefore have

mod

(27)

(28)

where (27) follows since , and hence , is i.i.d. uniformly
distributed over and since the modulo operation can only
decrease differential entropy. Inequality (28) follows from the
fact that the average differential entropy of a colored Gaussian
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noise is always smaller than that of a white Gaussian noise with
the same variance. Let us express as a product
of two factors

where is the additional noise enhancement caused by the
FFE in ZF-IF with the filter w.r.t. that caused by the FFE
of ZF-DFE. With this notation, we have

where

is the SNR loss due to IF-ZF equalization. It follows that the
gap-to-capacity in dB (at high SNR) is given by6

(29)

The first term on the r.h.s. of (29) is the well-known high-SNR
shaping gain, which equals 1.53 dB. The reason for this loss is
the uniform distribution of the output of the induced channel

. Due to the 1-D modulo operation, the output of the in-
duced channel is uniform at all SNRs. Note that at high SNR the
modulo operation incurs no loss since the output is uniformly
distributed as a result of the input distribution being uniform.
The modulo operation allows the decoder to use the original
codebook for decoding which preserves the original de-
coding complexity of the codebook. However, decoding the in-
duced channel’s output after the modulo reduction is equivalent
to searching for the point that was most likely transmitted over
the infinite lattice . This is strictly suboptimal since no
more than points of the infinite lattice, which correspond
to , are valid, and hence better performance can be achieved
by searching only over these valid points at the decoder.

While the loss for a uniform output amounts to 1.53 dB at high
SNR, at low SNR the loss may be significantly greater (see, e.g.,
[30]), which makes IF equalization less attractive in that regime.
In the low-SNR regime, this loss can be mitigated by avoiding
the modulo reduction at the receiver. Implementing such modifi-
cations at the receiver without significantly increasing the com-
putational complexity is an interesting avenue for future re-
search.

The second loss in (29) is related to the additional noise en-
hancement caused by the FFE. We denote the additional noise
enhancement when the optimal integer-valued filter (of arbitrary
length) is used by

It follows from Theorem 1 that is upper bounded by

(30)

6This is the gap-to-capacity in the case of (complex) transmission over com-
plex channels as well.

Fig. 5. Gap � for the real two-tap channel���� � ���� . The solid line
shows � for any value of �, the dashed line shows the bound (30) for � � �,
and the dotted line shows the noise enhancement induced by ZF-LE.

In order to gain more insight into the term , we illustrate the
effect of the noise enhancement through the following examples
of ISI channels.

Example 1—Two-Tap Real “RAKE” Channel: An interesting
example is a real channel with only two nonzero taps (which
may be spaced arbitrarily far apart), namely

. Without loss of generality, we can assume that ,
as otherwise we can transform the channel into the channel

by using an all-pass filter. It is rather ob-
vious that the optimal choice for is either or

. It can be shown by straightforward algebra
that for the choice , the noise enhancement is given by

, and for the choice the noise enhancement
is given by . It follows that for ,
is better, while for , is better, and the
maximum noise enhancement (which occurs for ) is

. Since for this channel , the total
noise enhancement amounts to . Fig. 5 depicts for the
real two-tap channel, along with the bound (30) evaluated for the
same channel, and the noise enhancement caused by a ZF-LE.
It is evident from the figure that for this channel the bound is
not tight.

Example 2—Two-Tap Complex “RAKE” Channel: Consider
the channel from the previous example ,
where now is a complex number. As before, we
assume without loss of generality that . As is now
a complex channel, we let take complex integer values
(Gaussian integers). In contrast to the real-valued two-tap
channel, in this case there is no clear choice of for each
value of . Nevertheless, similar to the real two-tap channel,

is independent of the delay between the first and the
second tap (as is also the case for the ZF-LE). This follows
since the noise enhancement caused by each of the filters

and is the
same. Therefore, if for the channel , a certain
choice of results in noise enhancement of , then for
the channel , the choice
results in as well. While the performance of a ZF-LE
is independent of the phase , the noise enhancement caused
by the ZF-IF equalizer is significantly influenced by . It is
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Fig. 6. Gap � (in dB) for the complex two-tap channel ���� � �����
� ���� , when the optimal integer-valued filter ���� of length smaller than (or
equal to) ��� � �� is used.

Fig. 7. Probability density function (pdf) of � (in dB) for the ISI channel
���� � 	 � where �	 � are i.i.d. random Gaussian variables
with zero mean and unit variance, when the optimal integer-valued filter ����
of length smaller than (or equal to) ���� �� is used.

interesting to note, however, that for the two-tap channel, the
bound (30) (in its complex form) is independent of . Fig. 6
depicts (in dB) for the two-tap channel with an optimal
choice of (which was found numerically by searching
over all filters with Gaussian integer coefficients of length

), for values of .

Example 3—An ISI Channel With Random Taps: In this ex-
ample, we consider the channel

where are i.i.d. real random Gaussian variables with
zero mean and unit variance. We numerically evaluate the proba-
bility density function (pdf) of in dB for the optimal choice
of over all integer-valued filters of length .
Fig. 7 depicts the results for , , and . The re-
sults show that becomes larger when the channel is longer.

The third loss incurred by ZF-IF equalization is related to
the constraint that the channel code is cyclic. The gap-to-ca-
pacity of ZF-IF equalization at a certain block error probability
is the sum of the shaping loss (in dB), the additional noise en-
hancement (in dB), and the gap-to-capacity (in dB, for the
modulo Gaussian channel) of the chosen cyclic code at the de-
sired block error probability. To the best of the authors’ knowl-
edge, it is still an open question whether cyclic codes can at-
tain the capacity of the AWGN channel, let alone, that of the
modulo Gaussian channel. Nevertheless, algebraic cyclic codes
over (such as BCH for example) have been extensively used
in communication systems for decades due to the fair tradeoff
they offer between performance and complexity. Modern (e.g.,
LDPC) cyclic codes are a subject of extensive recent research,
and some families of such codes were reported to have very
good performance over the AWGN channel; see e.g., [31] and
[32].

A subtle issue that deserves attention is the statistics of the ad-
ditive noise after the FFE in ZF-IF equalization. While a proper
choice of usually allows us to substantially reduce the
memory of this noise, its power spectrum density (PSD) is not
strictly flat, i.e., it is colored. Since the proposed scheme cru-
cially relies on the linear time-invariant structure of the code
and the channel, it is not clear how to incorporate an inter-
leaver. Therefore, it is desirable that the code that is used is not
sensitive to the memory of the noise. For additive noise chan-
nels with unit noise variance, random Gaussian codebooks with
nearest neighbor decoding are known to achieve any rate below

regardless of the exact noise statistics [33].
Thus, in general there is no problem with using AWGN code-
books for a colored Gaussian noise channel (assuming one is
targeting toward the capacity of an AWGN with variance equal
to that of the colored noise). However, our scheme is restricted
to using cyclic codes, and hence exploring the robustness of this
family of codes to memory in the noise is an interesting question
for future research. As a positive example, note that cyclic al-
gebraic codes, such as BCH codes, with hard decoding are only
affected by the number of errors within the block, and are there-
fore robust to the noise memory.

Most of the research effort on linear cyclic codes has been
devoted to binary codes. In the high-SNR regime, which is the
focus of this paper, the cardinality of the code alphabet must be
greater than 2, and a binary code does not suffice. In the next
section, we propose a practical coded modulation scheme for
high transmission rates that utilizes binary cyclic codes and is
suitable for cyclic-coded IF equalization.

VII. PRACTICAL CODING AT HIGH RATES

In order to achieve high transmission rates, using a binary
channel code, we propose a simple construction of a -ary cyclic
codebook which is obtained from a combination of a single
coded layer and uncoded layers. This construction, which re-
sults in an Ungerboeck set partitioning-type coded modulation
scheme (see [1]), utilizes coded and uncoded layers over in
order to obtain a codebook over , while essentially main-
taining the encoding and decoding complexity of a single binary



5814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

code. It can also be viewed as a variant of Construction A for
lattices [26].

Let be a binary cyclic code. The -ary codebook is
defined by

(31)

The codebook is nothing more than a mapping of a binary
coded layer and binary uncoded layers to

, in a manner that replicates the linearity and cyclic proper-
ties of the codebook in to the larger ring , as stated by
the next lemma.

Lemma 3: The codebook which is constructed according
to (31) is a linear cyclic code of length over the ring .

Proof: Let and be two members of the codebook .
Since any vector in can be decomposed into a sum of binary
vectors multiplied by powers of 2, we can write

and

It follows from the definition of the codebook that
and . In order to show that is linear over , we have
to show that

mod

The modulo- sum can be decomposed as

mod

for some binary vectors . It follows from
the definition of that mod iff . On
the other hand

mod mod

mod (32)

mod (33)

where (32) follows from the properties of the modulo operation,
and (33) from the linearity of . This proves that is linear
over . It is left to show that is cyclic. Denote a one-position
cyclic shift of a vector by . We would like to show that .
We have

Since is cyclic, , and hence .

The codebook is therefore suitable for IF equalization. It is
important to note that with this construction the last bits
of the uncoded layers, as well as those of the coded layer, have
to be zero in order to get the desired zero-padding effect.

When is used with IF equalization, the resulting induced
channel is (see Section III)

mod (34)

where

(35)

Substituting (35) into (34) gives

mod (36)

The codeword can be decoded via a simple two-step proce-
dure. The decoder first reduces modulo-2. This eliminates
the effect of the uncoded layers, and results in

mod mod

Now, the coded layer can be decoded from . In the second
step, the decoded layer is subtracted from giving rise to
(assuming correct decoding of )

mod

mod

The uncoded bits can be detected from using a slicer with
double step size as in Ungerboeck’s set partitioning. For more
details, see [34] and [35].

Due to the presence of the uncoded bits, the proposed code
construction admits some error floor. If very low error proba-
bilities are desired, one can extend the proposed construction to
support multiple coded layers. This may be done by applying
Construction D for lattices which is based on nested binary
codes, where the nested binary codes should be cyclic. This con-
struction, except for the cyclic codes constraint, is described in
detail in [36] and [37].

VIII. DISCUSSION AND CONCLUSIONS

We have presented a novel DFE scheme for the discrete-time
linear Gaussian channel, suitable for single-carrier transmission
where CSI is not available at the transmitter. The scheme en-
ables block decoding to be performed before applying the DFE
when a cyclic code is used. The channel is equalized to an im-
pulse response that is composed of integer coefficients only.
The performance of the proposed scheme was analyzed, and
in particular upper bounds on the induced noise enhancement
were derived. Several examples of ISI channels were examined
and it was shown that in many scenarios the scheme achieves a
rather small gap-to-capacity. An interesting avenue for further
research is to incorporate shaping into the scheme in order to
make it attractive at low SNR. Another interesting question to
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be explored is how IF equalization can be combined with itera-
tive equalization methods such as turbo equalization. Since the
noise enhancement the FFE in IF equalization causes is always
smaller than (or equal to) to that of a ZF-LE, combining it with
an iterative equalizer may result in better convergence.
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