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Abstract—In online betting, the bookmaker can update the
payoffs it offers on a particular event many times before the
event takes place, and the updated payoffs may depend on the
bets accumulated thus far. We study the problem of bookmaking
with the goal of maximizing the return in the worst-case, with
respect to the gamblers’ behavior and the event’s outcome. We
formalize this problem as the Optimal Online Bookmaking game,
and provide the exact solution for the binary case. To this end,
we develop the optimal bookmaking strategy, which relies on
a new technique called bi-balancing trees, that assures that the
house loss is the same for all decisive betting sequences, where
the gambler bets all its money on a single outcome in each round.

I. INTRODUCTION

Consider an experiment I with m ∈ N possible outcomes,
say [m] = {0, 1, . . . ,m − 1}. Bookmakers offer bets of the
following form on the outcome of the experiment: A gambler
may invest money in any of the m outcomes. For any 1$
invested in outcome i, the gambler receives γ(i)$ (γ(i) ≥ 1)
if the experiment’s result is I = i, and 0$ if the experiment’s
result is not i. Such bets are often referred to as “horse races”
in the literature [1], though the underlying experiment need
not be a horse race.

Let

Γ =

m−1∑
i=0

1

γ(i)
(1)

be the overround parameter associated with the offered bet,
and

r(i) =
1

Γ

1

γ(i)
, i = 0, . . . ,m− 1, (2)

be the probability distribution the bookmaker “assigns” to the
experiment. Assume further that the gambler invests q(i)$
in each outcome i = 0, . . . ,m − 1, where

∑m−1
i=0 q(i) =

1, such that both r = (r(0), . . . , r(m − 1))⊤ and q =
(q(0), . . . , q(m−1))⊤ are vectors in the (m−1)-dimensional
probability simplex ∆m =

{
p ∈ [0, 1]m :

∑m−1
i=0 p(i) = 1

}
.

Throughout the paper, the term “gambler” does not necessarily
refer to a single individual but rather to the collective group
of gamblers placing bets on the experiment’s outcome through
the bookmaker. From the bookmaker’s perspective, the number
of participants is irrelevant; only the total amount wagered on
each of the m possible outcomes matters.

The bookmaker has collected 1$ from the gambler before
the experiment, and needs to pay the gambler

L =

m−1∑
i=1

1{I = i}q(i)γ(i) = 1

Γ

m−1∑
i=0

1{I = i}fi(r, q) (3)

dollars after the experiment has taken place, where fi(r, q) =
q(i)
r(i) . The worst-case scenario, from the bookmaker’s perspec-
tive, is that the experiment’s outcome is i∗ = argmaxi fi(r, q),
and in this case L = 1

Γ∥f(r, q)∥∞, where f(r, q) =
(f0(r, q), . . . , fm−1(r, q))

⊤. Since r, q ∈ ∆m we clearly have
that ∥f(r, q)∥∞ = maxi

q(i)
r(i) ≥ 1 and this is attained with

equality iff r = q. Thus, a risk-averse bookmaker, whose
objective is maximal gain in the worst-case, should aim to
choose r in a way that will cause the gambler to distribute
its budget as q = r. If it succeeds, the house will collect a
gain of 1 − 1

Γ regardless of the experiment’s outcome. Thus,
when Γ = 1 the bet is fair, and for q = r both the house
and the gambler get zero gain, but when Γ > 1, the house
has a positive gain and the gambler a negative gain, when
r = q.1 Note, however, that the bookmaker first declares r and
the gambler places its bets according to q only afterwards. It
is therefore impossible for the bookmaker to guarantee that
r = q. On the other hand, if the gambler places its entire
bet on the correct outcome of the experiment, say outcome i,
the house can gain only if the corresponding offered payoff is
smaller than the placed bet, that is, γ(i) ≤ 1. Together with the
payoffs requirement γ(i) ≥ 1, it simply means that unless the
house payoffs are γ(i) = 1 (achieved with Γ = m, r(i) = 1

m ),
the house can lose under particular scenarios.

The game described above consists of a single round:
before the experiment the bookmaker declares Γ > 0 and
r ∈ ∆m (which correspond to γ(0), . . . , γ(m − 1) via (2))
and those cannot be updated until the experiment takes place.
The gambler then chooses q ∈ ∆m and distributes its budget
accordingly. Today, however, the gambling process is typically
much more dynamic. Sports betting is mostly performed
through websites, which employ algorithms for updating the
odds they offer as the event approaches, and sometimes

1There is clearly no motivation for a single gambler to distribute its budget
with q = r in this case, as this will result in negative gain with probability 1.
However, recall that our “gambler” is composed of many individual gamblers
and q represents their combined distribution, so some of them may obtain a
positive gain even if q = r.



even throughout the event [2]. The algorithms computing the
updated odds may rely on the bets accumulated on the event
thus far. The update algorithms may further rely on other
factors such as new information related to the event [3] (for
example, it may be revealed that a certain player is injured),
but in this paper we ignore such additional opportunities, and
we take a worst-case approach.

We therefore consider the following online setup. Assume
the bet happens in T rounds, and let Γ ≥ 1 be a fixed
overround parameter that remains constant throughout the T
rounds. In each round t = 1, . . . , T , the bookmaker declares
rt ∈ ∆m, such that the payoff it offers for each outcome
is γt(i) = 1

Γ·rt(i) , and the gambler responds by investing a
budget of 1$ distributed on the m possible outcomes according
to qt. The experiment happens at the end of the T th round.
The bookmaker has collected T$ and needs to pay the gambler

L =
1

Γ

m−1∑
i=0

1{I = i}
T∑

t=1

fi(rt, qt) (4)

dollars after the experiment have taken place. The question we
pursue is:

“What is the largest gain the bookmaker can guarantee
regardless of the gambler’s behavior and the experiment’s
outcome?”

We restrict attention to the case of a binary experiment
(m = 2) and provide an exact answer: the largest gain that
can be guaranteed is T

(
1− 1+T−1/2

Γ

)
. Recall that (1 − 1

Γ )

is an upper bound for the gain in a single-round attained
by the non-causal choice r = q. Our result shows that in
an online bet with T rounds we can come close to this
gain, up to a (normalized) penalty of T−1/2/Γ. In particular,
the bookmaker can guarantee a positive gain whenever the
overround parameter satisfies Γ > 1+T−1/2. We also provide
the precise algorithm for updating rt based on q1, . . . , qt−1

which attains at least this gain.
The problem of designing the update policy and computing

the optimal gain is a sequential/online optimization problem.
Very few problems in this family have been solved exactly for
any horizon T , see e.g. [4]–[8], and it is quite remarkable that
this particular problem does admit an exact solution. Moreover,
we find an efficient algorithm to compute the update policy.
Furthermore, while the O(T−1/2) behavior of the penalty term
is common to online optimization problems, we could not find
any of-the-shelf online optimization algorithm attaining this
rate of convergence for our problem. The reason for this is
that the loss functions fi(r, q) are unbounded. See more in
Section II-A.

Paper structure: Section II provides the problem formula-
tion and draws connections to related problems, while Section
III presents our main results regarding the optimal bookmaking
loss and the algorithms that achieve this loss. Finally, Section
IV concludes the paper.

II. PROBLEM FORMULATION AND RELATED WORK

We formalize our problem as a repeated vector-valued game
with T -rounds, dubbed the online bookmaking game, with two
players, the house/bookmaker and the gambler. The game takes
place in T rounds, where in each round the house chooses a
point in the simplex, which represents the returns it offers for
each one of the m outcomes of the event gambled on, and then
the gambler chooses a point in the simplex, which represents
how it distributes its betting money on the m outcomes.
Define:

• Loss vector: The loss vector is a mapping f : ∆m ×
∆m → Rm

+ . In particular,

f(r, q) = (f0(r, q), . . . , fm−1(r, q))
⊤, (5)

where

fi(r, q) =
q(i)

r(i)
, i = 0, . . . ,m− 1. (6)

• House Strategy/Algorithm: A strategy for the first
player (the house) is a set of T functions

ϕt : (∆m)
t−1 → ∆m, t = 1, . . . , T, (7)

such that at the tth round, the house chooses rt =
ϕt(q

t−1), where qt−1 = (q1, . . . , qt−1) are the t−1 points
in the simplex that the gambler chose in the previous
rounds.

• Gambler’s Strategy/Algorithm: A strategy for the sec-
ond player (the gambler) is a set of T functions

ψt : (∆m)
t → ∆m, t = 1, . . . , T, (8)

such that at the tth round, the gambler chooses qt =
ψt(r

t).
• Individual accumulated loss vector: The individual

accumulated loss vector of a given house strategy {ϕt} =
{ϕt}Tt=1 and T points qT = (q1, . . . , qT ) chosen by the
gambler is

φT ({ϕt}, qT ) =
T∑

t=1

f(rt = ϕt(q
t−1), qt). (9)

• Individual game loss: The individual game loss of a
given house strategy {ϕt} and the T points qT chosen by
the gambler corresponds to the largest return the gambler
can make, and is defined as

∥φT ({ϕt}, qT )∥∞

= max
i=0,...,m−1

{
T∑

t=1

fi(rt = ϕt(q
t−1), qt)

}
. (10)

• House strategy’s loss: The loss of a given house strategy
{ϕt} is

LT ({ϕt}) = max
qT∈(∆m)T

∥φT ({ϕt}, qT )∥∞. (11)

• Optimal house loss: The optimal house loss is

L∗
T = min

{ϕt}
LT ({ϕt}) = min

{ϕt}
max

qT∈(∆m)T
∥φT ({ϕt}, qT )∥∞.

(12)



When the underlying event has only m = 2 possible out-
comes, we refer to the game as the binary online bookmaking
game. This paper considers only the binary case. Note that
for the case m = 2, the simplex ∆m corresponds to the
interval [0, 1], so the probability vectors rt, qt ∈ ∆m may be
represented by a single number. With some abuse of notation,
in the binary case we therefore use rt, qt ∈ [0, 1] to denote
rt(1), qt(1), respectively, and the optimal house loss is defined
via

L∗
T = min

{rt}
max

qT∈[0,1]T
max

{
T∑

t=1

qt
rt(qt−1)

,

T∑
t=1

1− qt
1− rt(qt−1)

}
(13)

where in the binary case we denote the house strategy at time t,
that assigns a number rt ∈ [0, 1] to each vector qt−1 ∈ [0, 1]T ,
by rt(qt−1).

We note that the online bookmaking game is related to
the dynamic betting setup described above as follows: the
largest gain the bookmaker can guarantee, regardless of the
gambler’s behavior and of the event’s outcome, is T (1− L∗

T

TΓ ).
In particular, if Γ > 1

T L
∗
T , the bookmaker can guarantee a

positive gain.

Remark 1: Note that the definition of a gambler’s strategy
{ψt} is not really needed for defining the house strategy’s
loss as well as the optimal house loss, as those quantities are
computed by taking the worst-case sequence qT ∈ ∆T

m. We
nevertheless chose to include the gambler’s strategy in the
online bookmaking game definition to facilitate the operational
interpretation of this game as representing the online gambling
procedure described above.

A. Related Works

Competing with fixed strategies: Observe that the (non-
causal) fixed strategy

rt = q̂ =
1

T

T∑
i=1

qt, t = 1, . . . , T (14)

attains the individual accumulated loss vector φT (q̂, q
T ) =

(T, . . . , T )⊤. Thus, the objective of designing an algorithm
{ϕt} that attains house strategy loss LT ({ϕt}) close to T ,
is identical to that of designing an algorithm that attains
minimal regret with respect to the class of all fixed (time-
invariant) strategies rt = r : ∀t = 1, . . . , T , where r runs
through all points in the simplex ∆m. One can also consider
a discretization of ∆m with M points r1, . . . , rM ∈ ∆m

and aim for a minimal regret with respect to only those
M “experts”. For scalar bounded loss functions , there are
many online optimization algorithms that attain regret of
O(
√
T logM) with respect to any class of M experts [9]

[10], the multiplicative weights updates (MWU) algorithm
being a canonical representative [11]. Note, however, that our
online optimization problem is vector-valued, and furthermore,
the loss functions f0(r, q), . . . , fm−1(r, q) are unbounded in
∆m ×∆m. The problem of unbounded loss may be handled

by choosing 0 < δT < 1 and restricting the class of
competing fixed strategies to the region ∆m ∩ [δT , 1]

m, such
that for any r in this region and any q ∈ ∆m, we have that
∥f(r, q)∥∞ ≤ 1

δT
. The value of δT should be chosen small

enough such that for any point r ∈ ∆m there is a “close
enough” allowed point in ∆m ∩ [δT , 1]

m, but large enough
so that the upper bound 1

δT
on ∥f(r, q)∥∞ is not too large.

When such a restriction is employed, our problem becomes
a vector-valued online optimization problem with bounded
loss. While methods such as MWU, designed for scalar online
optimization, are not suitable for such a task, the Blackwell
approachability framework may be applied.

Blackwell approachability: For a vector-valued game with
loss function f(r, q) ∈ Rm, Blackwell [12] have posed
and answered the following question (see [10, Definition
13.3]): Given a convex region S ⊂ Rm, can we find a
strategy {ϕt(qt−1)}Tt=1 such that the Euclidean distance be-
tween 1

T

∑T
i=1 f(rt = ϕt(q

t−1), qt) and S vanishes with
T , uniformly in qT ? A set S for which such a strategy
exists is called approachable, and Blackwell provided a simple
necessary and sufficient condition for approachability, and pro-
vided an algorithm whose average loss vector 1

T

∑T
i=1 f(rt =

ϕt(q
t−1), qt) approaches S uniformly for all qT , provided that

S is approachable. Whenever the loss function is bounded, the
convergence rate is O(T−1/2).

In the online bookmaking game, we are interested in mini-
mizing ∥ 1

T

∑T
i=1 f(rt = ϕt(q

t−1), qt)∥∞. Denoting the closed
ℓ∞ ball in Rm by B∞ = {x ∈ Rm : ∥x∥∞ ≤ 1},
the question of characterizing the optimal house loss L∗

T is
equivalent to finding the smallest β > 0 such that there
exists a strategy {ϕt(qt−1)}Tt=1 for which 1

T

∑T
i=1 f(rt =

ϕt(q
t−1), qt) ∈ β · B∞. Thus, in principle, one can use

Blackwell’s algorithm for designing a “good” house strategy.
The problem, however, is that the loss function is not bounded
for the online bookmaking game, and one must therefore
restrict the strategy space to vectors in ∆m ∩ [δT , 1]

m as
described above.

In the extended version [13], we show that this restricted
strategy provides the following upper bound:

Theorem 1 (Th. 5 of [13]): The Blackwell approachability
algorithm can be adapted to the online bookmaking problem,
achieving in the binary case 1

T L
∗
T ≤ 1 + O(T−1/4) for all

qT ∈ ∆T
m.

Theorem 1 highlights that, to the best of our understanding,
standard tools are insufficient for proving our main result and
fail to recover the optimal convergence rate. However, it is
worth noting that the Blackwell algorithm does not require
knowledge of the time horizon T .

Dynamic programming: The online bookmaking problem
can be formulated as a Markov decision process (MDP) with
a state defined as the vector of accumulated bets on each team
[14]. At each time, the action involves a min-max over rt, qt,
while at the final time, an additional maximization over the
accumulated bets’ vector is performed. This formulation en-
sures that actions based on the defined state are optimal, with



the advantage that the (normalized) states and actions lie in
time-invariant spaces. However, the state space is continuous,
requiring approximation methods, such as grid quantization,
to evaluate the optimal gain numerically. Interestingly, as we
demonstrate, considering actions based on the entire history
rather than just the current state can simplify solutions to
certain sequential problems.

Connection to universal compression: The online book-
making game is closely related to the universal compression
problem. In particular, consider the universal compression
problem [15, Section IV] of designing a variable-length prefix-
free source code g : [m]T → {0, 1}∗ such that for any vector
xT ∈ [m]T we have that

ℓ(xT )− T ·H(q̂xT ) = o(T ). (15)

Here, ℓ(xT ) is the length (number of bits) of the codeword
g(xT ) representing xT , q̂xT is the empirical distribution
(normalized histogram) of the sequence xT , and H(·) is the
entropy function (defined with logarithm taken to base 2, such
that the entropy is measured in bits). It is well-known that the
problem of designing a variable-length prefix-free code for
sequences in [m]T is equivalent (up to constant number of
bits) to setting a probability assignment on [m]T [1], which in
turn is equivalent to a sequence of T conditional probability
assignments pXt|Xt−1 : [m]t−1 → ∆m, t = 1, . . . , T . Any
strategy {ϕt} for the online bookmaking game induces a
sequence of T conditional probability assignments rXt|Xt−1 :
[m]t−1 → ∆m, t = 1, . . . , T . To see this, assign to each value
i ∈ [m] the corresponding standard basis vector ei (we index
the coordinates from 0 to m−1, and ei is the vector whose ith
coordinate equals 1 and all the rest are zero). These vectors are
points in ∆m, so we may define (with some abuse of notation)
the conditional probability assignments

rXt|Xt−1(·|xt−1) = ϕt(q1 = ex1
, · · · , qt−1 = ext−1

), t ∈ [T ].
(16)

In fact, we will see in the next section that the problem of
designing an optimal strategy {ϕt} for the online bookmaking
game is equivalent to that of designing an optimal strategy
for the case where all points q1, . . . , qT are chosen from
{e0, . . . , em−1}. With the probability assignment (16) we can
utilize Jensen’s inequality to show (see [13])

T∑
t=1

m−1∑
i=0

1{xt = i} log2
1

rXt|Xt−1(i|xt−1)
−T ·H(q̂xT )

≤ T log2

(
LT ({ϕt})

T

)
. (17)

Thus, any strategy {ϕt} for the online bookmaking game
with house strategy loss LT ({ϕt}) = T + o(T ) can be
translated to a universal compression scheme that attains
redundancy of o(T ) bits with respect to the class of loss-
less compressors corresponding to an i.i.d. distribution. As
it turns out, the opposite is not true. For instance, using
the Shtarkov/Krichevsky-Trofimov probability assignment [8],

[15], [16] for rXt|Xt−1 , which yields redundancy of O(log T )
bits for compression of any xT ∈ {0, 1}T [17, Chapter
13.5], results in

∑T
t=1 f1(rt, qt) = 2T for some sequences

qT ∈ {0, 1}T . Thus, in this sense, designing strategies for the
online bookmaking game is a harder problem than designing
schemes for universal compression.

III. MAIN RESULTS

The following theorem summarizes our main results, pre-
senting the optimal house loss and the performance of two
algorithms based on whether the gambler is decisive. Specif-
ically, a decisive gambler chooses qT ∈ {0, 1}T , that is, at
each step it places its entire bet on a single outcome of the
experiment.

Theorem 2: The optimal house loss for the binary online
bookmaking game is

L∗
T = T +

√
T . (18)

Moreover, if the gambler is decisive, Algorithm 1 (Section
III-A) defines a house strategy {rALGt } = {ϕALGt } that can be
computed with T simple operations, and achieves the optimal
house loss

∥φT ({rALGt }, qT )∥∞ = L∗
T (19)

for all qT ∈ {0, 1}T . If the gambler is non-decisive, i.e., qT ∈
[0, 1]T , the house strategy {rALGt } = {ϕALGt } (defined in Eq.
(20)) achieves an individual game loss that can be bounded as

∥φT ({rALGt }, qT )∥∞ ≤ L∗
T

for all qT ∈ [0, 1]T .
The proof is given in [13]. Recall that L∗

T corresponds to the
scenario where both the house and the gambler play optimally,
and the event’s outcome is chosen to maximize the gambler’s
gain. Even if the gambler plays optimally, the gambler’s gain
can be smaller than L∗

T if the event’s outcome does not play
to its favor.

The main difference in the guarantees of Algorithm 1
and its expected version in (20) for continuous bets stems
from the gambler’s behavior. We show in [13] that decisive
(binary) gamblers maximize the house’s loss. Thus, when a
bookmaker follows the optimal strategy in Algorithm 1 against
an optimal gambler, its loss for the worst outcome is exactly
L∗
T . However, if the gamblers are not decisive, the house may

benefit from such behavior so that its loss can be decreased.
For instance, in the extreme case where the gambler distributes
its money according to the offered bet, i.e., qt = rt, the house’s
loss can be can be as low as T .

A. Algorithms for Optimal Bookmaking

In this section, we present two algorithms for the online
bookmaking problem in which the experiment has two pos-
sible outcomes, i.e., the binary online bookmaking problem.
We follow the terminology that the experiment’s outcome is
the winning team in a game between Team 0 and Team 1.
The algorithms are sequential and take as input the sequence
of bets q1q2 . . . qt−1 placed so far, and produce the sequence



of odds r1r2 . . . rt for t = 1, . . . , T . Recall that the odds and
the bet, at each time, are rt ∈ ∆m and qt ∈ ∆m, and in the
binary case each of them can be described with a scalar, i.e.,
rt

def
= rt(1) ∈ [0, 1] and qt

def
= qt(1) ∈ [0, 1]. The corresponding

payoffs vector that will be published by the bookmaker at time
t is [γt(0), γt(1)] = [ 1

Γ(1−rt)
, 1
Γrt

].
The difference between the two algorithms is based on the

gambler’s behavior. First, we present the optimal algorithm
for the case where the gambler is decisive, meaning their bets
satisfy qt ∈ {0, 1}. For this case, Theorem 2 asserts that,
regardless of the gamblers’ bets, qT , the algorithm achieves
the optimal loss L∗

T . We then extend the strategy in Algorithm
1 to handle continuous bets qt ∈ [0, 1].

B. An Optimal Algorithm for Decisive Gamblers

The algorithm for decisive bets is presented in Algorithm
1. The main idea is to track two numbers, (a, b), which serve
as the state of the algorithm and are updated each time a new
bet is placed. Initially, the state is set to the optimal loss,
(a, b) = (T +

√
T , T +

√
T ).

The state variables (a, b) correspond to the worst-case future
losses, considering whether Team 0 or Team 1 will win the
game, respectively. As new bets are placed, the state is updated
in a way that ensures that the worst-case losses for both teams
are minimized. This point is made clearer in [13].

Algorithm 1 Optimal Strategy For Decisive Gamblers
Inputs: T (Total rounds), q1q2 . . . qT−1 (Bets are revealed
sequentially)
Output: rT (House strategy)
Initialization: a = T +

√
T , b = T +

√
T

r1 ← 1
2

for t = 1 : T − 1 do
d← T − t
if qt = 0 then

a← d b−(d−1)
b−d ▷ Update the future loss for Team 0

else if qt = 1 then
b← da−(d−1)

a−d ▷ Update the future loss for Team 1
end if
b+ ← (d− 1)a−(d−2)

a−(d−1) ▷ Hypothetical future loss for
Team 1

rt+1 ← 1
b−b+

end for

The strategy rt+1(q
t) only depends on qt, and we de-

note the collection mappings produced by Algorithm 1 as
{ϕALGt } = {rALGt }. The algorithm’s implementation requires
tracking two real numbers and at each cycle only a simple
update is executed.

C. Algorithm for Non-Decisive Gamblers (Continuous Bets)

In practice, the gambler is not a single entity. Rather, it
represents the accumulation of bets made by several gamblers,
that may distribute their bets over the two teams. We present
a modification of Algorithm 1 to handle continuous bets qt ∈
[0, 1].

The algorithm for continuous bets qt ∈ [0, 1] is based on
the optimal policy for binary bets, generated by Algorithm
1. In particular, let rALGt (xt−1) denote the odds produced by
Algorithm 1 for some input xt−1 ∈ {0, 1}t. The idea here is
to view qt ∈ [0, 1] as the expected value of a binary random
variable Xt ∼ Ber(qt). The strategy for continuous bets is

rALGt (qt−1) = E
[
rALGt (Xt−1)

]
, (20)

where the expected value is taken with respect to the sequence
of independent random variables Xi ∼ Ber(qi). Note that
(20) defines a deterministic, instantaneous mapping, and we
denote the sequence of mappings by {rALGt }. Using the fact
that q 7→ fi(r, q) is linear and r 7→ fi(r, q) is convex, we show
in [13] that the loss for the strategy {rALGt (qt−1)} from (20)
is maximized by qT on the boundary of [0, 1]T , that is, on
{0, 1}T .

Algorithm 1 involves carrying out simple operations per
round to compute the action rALGt (qt−1) when the gamblers
are decisive, leading to an efficient total runtime of O(T ).
Unfortunately, this efficiency is lost when computing the odds
for non-decisive gamblers. In this case, the odds at time t are
computed via (20) as

rALGt (qt−1) =
∑

xt−1∈{0,1}t−1

rALGt (xt−1)

t−1∏
i=1

qxi
i (1− qi)1−xi .

(21)

Therefore, calculating the odds when the gamblers place
continuous bets involves a summation over 2t−1 terms which
is computationally very expensive. In [13], we provide a low-
complexity algorithm to approximately calculate rALGt (qt−1)
and quantify this algorithm’s approximation error. This algo-
rithm approximates the expectation operation in (20) via a
Monte Carlo simulation.

IV. CONCLUSIONS

We have introduced the online bookmaking game, where
the house/bookmaker updates the odds it offers based on the
bets accumulated so far, with the goal of maximizing its worst-
case return. We have shown that the optimal strategy of the
gambler is decisive, meaning that in each round the gambler
places all its bet on a single outcome. Consequently, the
problem of designing a general optimal house strategy reduces
to designing an optimal strategy for decisive gamblers. For the
binary case, we have shown that the latter problem is a special
case of the tree bi-balancing problem, that we introduce and
solve. Consequently, we obtain the complete solution to the
binary online bookmaking problem, and develop the optimal
algorithm for updating the odds offered by the house.
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