
ar
X

iv
:2

50
5.

13
16

4v
1

 [
cs

.I
T

]
 1

9
M

ay
 2

02
5

High-Rate Nested-Lattice Quantized Matrix
Multiplication with Small Lookup Tables

Iris Kaplan
Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

Email: iris.kaplan1@mail.huji.ac.il

Or Ordentlich
Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

Email: or.ordentlich@mail.huji.ac.il

Abstract—Recent work have shown that the quantization
for matrix multiplication problem can be optimally solved by
quantizing each column in each matrix using a nested lattice code,
and then multiplying the de-quantized matrices. It was further
demonstrated that when product codes of sub-dimension d and
rate R are used, the de-quantization and inner product operations
can be implemented with querying a lookup table (LUT) of size
22dR, but this is only useful when dR is sufficiently small. This
in turn limits LUT-based inner product decoding to low-rate
quantizers. In this work, we develop a rate R hierarchical nested
lattice quantization framework, which quantizes each vector to
M layers, and admits LUT-based inner product decoding using
an LUT of size 22d

R
M , allowing for high-rate quantization. We

provide analytic bounds on the loss of the developed scheme com-
pared to standard nested lattice quantizers, and also numerically
illustrate that this loss is negligible. Thus, our scheme enables to
use small LUTs without compromising the overall distortion.

I. INTRODUCTION

Matrix multiplication constitutes the major part of the work-
load associated with inference in deep neural nets (DNNs) and
large language models (LLMs). In order to compute A⊤B for
two matrices A ∈ Rn×a and B ∈ Rn×b and store the result,
one needs to fetch/store n(a+b)+ab entries from/to memory,
whereas the computation requires 2nab operations. Modern
hardware has become so efficient in performing multiplications
and additions, that it is often the memory bandwidth that
forms the bottleneck in matrix multiplication, especially when
a or b are small. To remedy the limitations posed by the
memory bandwidth, much research in the AI community over
the last decade was dedicated to reducing the IO burden by
compressing/quantizing the entries of one or both matrices
A,B [1]–[11]. See [12, Section I.A] for a discussion on
what quantization rates are required for fully utilizing the
compute cores. As it turns out, LLMs in the generation
phase are typically memory-limited, and any reduction in the
quantization rate speeds up the inference time proportionally.
While on modern GPUs the memory limitation is so severe,
that one can afford to spend a few cycles on de-quantization
without affecting inference time, in modern CPUs the memory
limitation is less acute, and often de-quantization must be
highly efficient in order to result in shorter inference time.

Motivated by the above, this work develops a quantization
scheme for matrix multiplication with fast decoding, which
relies on using lookup tables (LUT) rather than first de-
quantizing the elements of A,B and computing their product.

In particular, we rely on the nested-lattice based quantization
for matrix multiplication scheme from [12], which was shown
to be worst-case optimal when high-dimensional quantizers
are used. A low-complexity variant of that scheme, based on
the product of Voronoi codes [13] in Rd, where d is small, say
3 ≤ d ≤ 8, was further developed in [12], and was numerically
shown to perform quite close to the fundamental limit, and
attain state-of-the-art results for quantized LLMs [14]. While
the encoding in this scheme requires to perform nearest
neighbor decoding to the base lattice L ⊂ Rd, it was pointed
out that decoding can be performed via repeated access to an
LUT with 22dR entries, that stores all possible inner products
between two vectors in the rate-R Voronoi code. Decoding
using LUTs is highly appealing (at least on a CPU), but only
if the LUT is small enough to be stored in the fastest cache (L1
cache), which poses a significant constraint on the dimension-
rate product dR (say, dR ≤ 8− 9 for modern CPUs).

The goal of this work is to circumvent this limitation, and
allow for nested-lattice quantization for matrix multiplication
which admits efficient LUT-based decoding even for high
quantization rate R. To this end, we develop an hierarchical
nested lattice quantization scheme. Our scheme quantizes each
vector in Rd to M ≥ 1 layers, and decoding of the inner
product between two quantized vectors in Rd only requires
M2 queries to a single LUT with 22d

R
M entries. We show that

despite the reduction of the required LUT size, our scheme’s
performance is extremely close to that of a Voronoi code with
the same rate.

A Python implementation for quantized matrix multiplica-
tion using our scheme is available in [15], whereas an efficient
C implementation is available in [16].

Related Work: Our construction falls within the framework
of successive refinement [17], which is also often referred to as
embedded codes or residual vector quantization in the litera-
ture. The quadratic Gaussian rate-distortion problem is known
to be successively refinable, that is, successive refinement
codes can achieve the optimal rate-distortion tradeoff. Several
image compression algorithms, such as Embedded Zerotree
Wavelet (EZW) [18] and Set Partitioning in Hierarchical Trees
(SPIHT) [19], include a successive refinement component
where first the MSBs of certain coefficients are sent, and the
LSBs are sent afterwards. In an attempt to extend the MSB-to-
LSB "scalar-quantization" refinement used by these algorithms
to lattice-based vector quantization, [20] and [21] constructed

https://arxiv.org/abs/2505.13164v1

lattice-based successive refinement schemes in the same spirit
as ours. However, [21] only considered layers with rate R = 1
bit, whereas the encoding/decoding in [20] did not fully exploit
the algebraic structure of nested lattice codes. Furthermore,
the encoding in [20], [21] is top-bottom, as is usually the case
for successive refinement: one first quantizes the source to
the coarsest lattice, and then uses a finer lattice to quantize
the residual quantization error, and so on. Our scheme, on
the other hand, quantizes the source to the finest lattice, and
describes the obtained point as a coset of a coarse lattice whose
index grows with the number of layers. As a consequence, we
are able to obtain rigorous bounds on the performance of our
hierarchical scheme compared to a single-layer Voronoi code
of the same rate.

Using a Cartesian product of low-dimensional quantizers
for quantizing a high-dimensional vector is a standard practice
from the first days of digital communication [22], [23, Chapter
12.7]. More recently, product codes for fast computation
of approximate inner product or Euclidean distance were
heavily studied within the context of approximate nearest
neighbor (ANN) search and information retrieval. The idea
of partitioning vectors to small chunks, building a quantizer
for each chunk, and constructing corresponding LUTs for
fast inner product computations was developed in [24]. The
work [24] inspired a huge body of follow-up work. Among
the many extensions studied, the combination of product
codes with additive quantization seems to be closest to the
approach we take in this paper. In additive quantization [25]
one constructs the quantizer Q : Rd → [

∏M
m=1 Km] as the

Minkowski sum C1 + · · ·+ CM of M codebooks C1, . . . , CM
of sizes K1, . . . ,KM , respectively. Typically, those codebooks
are learned from the data using variants of Loyd’s algorithm/K-
means, and are therefore unstructured, which makes the
encoding/decoding quite challenging. Moreover, in general
product+additive quantization requires storing many different
codebooks and LUTs. Our scheme uses the same lattice for all
chucks and all sub-codebooks, and a single lookup table for
all operations involved in the inner product computation. For
codebooks learned via K-means, the entries of the LUTs must
be quantized as well, which may degrade performance [26].
In contrast, for standard choices of the base lattice, e.g., the
Dn or En families, the possible inner products will further
be integer-valued, so each entry of the LUT can be efficiently
stored. Product codes with LUT based inner product decoding
for machine learning applications was considered in [27].

II. HIERARCHICAL NESTED-LATTICE QUANTIZERS

We first review some basic lattice definitions. See [28] for
a comprehensive treatment of lattices in information theory.
For a lattice L ⊂ Rd we define the nearest neighbor quantizer
QL : Rd → L as

QL(x) = argmin
λ∈L

∥x− λ∥, (1)

where ties are broken arbitrarily, but in a systematic manner.
The Voronoi region VL is defined as the set of all points in
Rd that are closer to 0 than to any other lattice point

V = VL =
{
x ∈ Rd : QL(x) = 0

}
. (2)

Any lattice L ⊂ Rd has a (non-unique) generating matrix
G ∈ Rd×d such that L = GZd. Let Z ∼ Uniform(VL) be a
random vector uniformly distributed over the Voronoi region
of L. We define the second moment of the lattice L as σ2(L) =
1
dE∥Z∥

2. For any natural number r we have that rL ⊂ L and
we construct the nested lattice quantizer/Voronoi code [13]

Ar = L ∩ (rV), (3)

which is equivalent to the the quotient group L/rL ∼=
(Z/rZ)d. This algebraic structure enables to use Voronoi
codes as quantizers with fast encoding and decoding schemes.
See [13] and also [12, Algorithms 1 and 2]. In particular,
these algorithms encode a vector x ∈ Rd to d log2 r bits,
and based on those bits, the decoder outputs x̂ ∈ Ar, where
x̂ = QL(x) whenever QL(x) ∈ rV . The event x̂ ̸= QL(x) is
called an overload event. The quantization rate of this scheme
is R = log2(r).

Note that for Voronoi codes, the tie-breaking in (1), which
affects the boundary of V defined in (2), is highly important,
since for an even integer r we will always have points of L on
the boundary of rV . To circumvent the numerical difficulties
associated with treating the boundary, one can fix some very
small and unstructured1 perturbation vector ε ∈ Rd and
replace the nearest neighbor quantizer QL(x) with QL(x+ ε)
everywhere.

Our end goal in this paper is to compute inner products
based on Voronoi codes and LUTs. To that end we can pre-
compute all inner products of pairs of points λi, λj ∈ Ar and
store them in an LUT of size r2dB = 22dRB-bytes, assuming
we use B bytes to represent the value of each inner product.
In order to allow fast access to the LUT, it must be small
enough to fit in the L1 cache. This constrains the product
dR, and typical numbers (depending on the processing unit
that is used) are dR ≤ 8 − 9. Our goal is to facilitate the
use of Voronoi codes with LUT-based inner product decoding,
while allowing arbitrarily large quantization rate R. This will
be enabled via hierarchical nested-lattice quantizers.

A. Proposed Hierarchical Nested-Lattice Quantizers

Algorithm 1 Hierarchical Nested-Lattice Encoder

Inputs: x ∈ Rd, Lattice L ⊂ Rd with generating matrix
G ∈ Rd×d, nesting ratio q ∈ N, hierarchy depth M ∈ N
Outputs: Encoding vectors b0, b1, . . . , bM−1 ∈ [q]d

g̃ ← x
for m = 0 to M − 1 do

g̃ ← QL(g̃)
bm ← [G−1 · g̃] mod q
g̃ ← g̃/q

end for
OverloadError = 1{QL(g̃) ̸= 0}
return b0, b1, . . . , bM−1

For a lattice L ⊂ Rd and a natural number q, we denote by
QqL(·) the nearest neighbor quantizer for the lattice qL. Note

1In particular, we would like to avoid the situation where ε is contained in
one of the hyperplanes defining the boundary of V .

Algorithm 2 Hierarchical Nested Lattice Decoder

Inputs: Encoding vectors b0, b1, . . . , bM−1 ∈ [q]d, Lattice
L ⊂ Rd with generating matrix G ∈ Rd×d, nesting ratio
q ∈ N, hierarchy depth M ∈ N
Output: Reconstructed vector x̂ ∈ L
x̂← 0
for m = 0, . . . ,M − 1 do

xm ← G · bm − q ·QL((G · bm)/q)
x̂← x̂+ qmxm

end for
return x̂

that QqL(x) = q ·QL(x/q). For a non-negative integer m and
x ∈ Rd, define

Q◦m(x) = Q◦m
L,q(x) =

(
QqmL ◦Qqm−1L · · · ◦QL

)
(x)

= QqmL

(
Qqm−1L (· · · (QL(x)))

)
. (4)

Note that Q◦m(x) is not equal to QqmL(x) in general, unless
L, q satisfy the perfect tiling condition: (L ∩ qV) + V = qV .
The perfect tiling condition is met by L = Z with odd q, but
is rarely met by any lattice in dimensions d > 1.

Fix a lattice L, and two natural numbers q,M , and recall
that Aq = L ∩ (qV). Our scheme encodes each x ∈ Rd to
d·M log2(q) bits, and based on those bits the decoder outputs a
point x̂ in the constellation CL,q,M =

∑M−1
m=0 qmAq where the

sum above is a Minkowski sum. Whenever QL(x) ∈ CL,q,M

we have that the reconstruction produced by our scheme
satisfies x̂ = QL(x). Figure 2 depicts the constellation CL,q,M

for the hexagonal lattice L = A2, q = 6 and M = 3.
To describe our scheme, define g̃m(x) = Q◦m(x)

qm , and note
that g̃m ∈ L by definition, and can be computed recursively
as

g̃0(x) = QL(x); g̃m(x) = QL

(
g̃m−1(x)

q

)
, m = 1,

For m = 0, . . . ,M − 1, let

gm(x) = Q◦m(x)−Q◦(m+1)(x)

= Q◦m(x)−Qqm+1L (Q◦m(x))

= qm
(
Q◦m(x)

qm
−QqL

(
Q◦m(x)

qm

))
(5)

= qm (g̃m(x)−QqL (g̃m(x))) . (6)

Since g̃m(x) ∈ L, we clearly have that gm(x) ∈ qm(L ∩
qV) = qmAq . Furthermore, we can use the standard Voronoi
encoder/decoder [13], [12, Algorithms 1 and 2] for represent-
ing g̃m(x) − QqL (g̃m(x)) ∈ Aq using d log2(q) bits, and
mapping those bits back to Aq . Algorithm 1 implements the
encoder in our scheme. It recursively computes {g̃m}M−1

m=0

and represents each of them using the sequences {bm}M−1
m=0 ,

each of length d log2(q) bits. The corresponding decoder is
given in Algorithm 2. It recovers from each vector bm the
corresponding point g̃m(x)−QqL (g̃m(x)) in Aq , and outputs
the reconstruction

x̂ =

M−1∑
m=0

qm [g̃m(x)−QqL (g̃m(x))] =

M−1∑
m=0

gm(x). (7)

Lemma 1: Let x ∈ Rd and let x̂ ∈ L be its reconstruction
using the hierarchical nested-lattice quantizer, that is the output
of Algorithm 2 applied on the output of Algorithm 1. Then
x̂ = QL(x) iff Q◦M (x) = 0.
Proof. Telescoping

∑M−1
m=0 gm(x) in (7), we observe that

x̂ = Q◦0(x)−Q◦M (x) = QL(x)−Q◦M (x). (8)

Thus, x̂ = QL(x) iff Q◦M (x) = 0.
As a consequence of Lemma 1, we see that the binary

variable OverloadError computed in Algorithm 1 indeed
satisfies OverloadError = 1{x̂ ̸= QL(x)}.

Scaling and dithering: In order to get the smallest dis-
tortion using the proposed scheme, as well as when using
standard Voronoi codes, one scales the constellation by a factor
β > 0. The granular error is σ2(βL) = β2σ2(L) and is
increasing in β. On the other hand, the overload probability is
decreasing in β. Thus, one typically looks for the smallest β
for which the overload probability is “small enough”. Often,
one also uses a dither vector z ∈ V to shift the constellation.
Specifically, to implement scaling by β > 0 and dithering by
z ∈ V , we set the input to our encoder as x

β − z instead of x,
and the output of our decoder as β(x̂+ z) instead of x̂.

Overload avoidance mechanism: We employ an overload
avoidance mechanism similar to the one introduced in [12].
Specifically, we first set β = β0 and T = 0. We input x

β −z to
our encoder, and check whether OverloadError = 0. If so, we
send the encoded bits b0, . . . , bM−1. Otherwise, we set β ←
2αβ, T ← T+1, where α > 0 is a parameter of the algorithm,
and try again, and so on until OverloadError = 0 and we send
the encoded bits b0, . . . , bM−1. We also send an entropy-coded
description of T to the decoder, using ≈ H(T) bits. In total,
the expected rate of this scheme is M log2(q) +

H(T)
d . The

decoder, in turn, reconstructs T from the entropy coded bits
and x̂ from b0, . . . , bM−1, and outputs 2αTβ0(x̂+ z).

Successive Refinement: In some situations one may wish
to start by recovering the source x with low resolution and
gradually improve the resolution as more bits describing it
become available. If we run the for-loop in Algorithm 2 from
m = M−1 down to m = 0, we will get a gradually improving
description. Moreover, if we only recover t < M layers, by
running that for-loop from i = M −1 down to i = M − t, we
will recover Q◦(M−t)(x)−Q◦M (x), which equals Q◦(M−t)(x)
if overload did not occur.

B. Bounds and numerical results

Let Pq,M = {x ∈ Rd : Q◦M (x) = 0}, and note that Pq,M

is a fundamental cell of the lattice qML. Note that furthermore
CL,q,M = L ∩ Pq,M , and it therefore follows that CL,q,M

∼=
L/qML. A Voronoi code AqM selects the coset representa-
tives with the lowest energy, and consequently approximately
minimizes the overload probability among all choices of coset
representatives of L/qML. While the hierarchical scheme
described in the previous subsection has several advantages
over a Voronoi code of the same rate and same lattice L,
it selects the coset representatives of L/qML as L ∩ Pq,M ,
and is therefore inferior to the corresponding Voronoi code in
terms of overload probability. The following result shows that

Fig. 1: Codebook of the hierarchical nested lattice quantizer
with L = A2, q = 4 and M = 3.

the overload probability of CL,q,M is nevertheless upper (resp.
lower) bounded by the overload probability of a Voronoi code
whose rate is log

(
1∓ 1−q1−M

q−1

)
bits smaller (resp. greater).

Lemma 2:

AqM (1−rq,M) ⊂ CL,q,M ⊂ AqM (1+rq,M), (9)

where rq,M = q−M
∑M−1

m=1 qm = 1−q1−M

q−1 .
The green and pink scaled Voronoi regions in Figure 2

illustrate the inclusion in (9).
Proof. Recall that since V is a convex set in Rd, we have
that αV + βV = (α + β)V for all α, β > 0. To prove that
CL,q,M ⊂ AqM (1+rq,M), note that

CL,q,M =

M−1∑
m=0

qm(L ∩ qV) ⊂ L ∩

(
qV ·

M−1∑
m=0

qm

)

= L ∩ ((qM +

M−1∑
m=1

qm)V). (10)

To prove AqM (1−rq,M) ⊂ CL,q,M , it suffices to show that for
any y ∈ AqM (1−rq,M) it holds that Q◦M (y) = 0. We have,

Q◦(M−1)(y) = QqM−1L

(
Q◦(M−2)(y)

)
∈ Q◦(M−2)(y) + qM−1V ∈ · · · ∈ QL(y) +

M−1∑
m=1

qmV (11)

and since y ∈ AqM (1−rq,M), we also have y = QL(y) ⊂
qM (1− rq,M)V . Consequently,

Q◦(M−1)(y) ∈ qM (1− rq,M)V +

M−1∑
m=1

qmV = qMV, (12)

which implies that Q◦M (y) = QqML

(
Q◦(M−1)(y)

)
= 0

Simulation results: We plot the distortion-rate tradeoff
attained by three different nested lattice quantization schemes:
(a) Voronoi code with r = qM (b)Voronoi code with r =
qM (1− rq,M) (c)The developed hierarchical scheme with M
layers and nesting ratio q. For all schemes we use the same
base lattice L, and use the overload avoidance mechanism
described above, with α = 1/3 and β0 optimized separately
for each of the three schemes. In the simulations we use
L = D4, M = 2, and q ∈ {3, 4, . . . , 9}. We quantize
N = 5000 iid realizations of a N (0, I4) source, and plot the
obtained distortion-rate tradeoff for each scheme in Figure 2a.
We also plot the Shannon limit D(R) = 2−2R for reference.
It can be seen that the hierarchical nested-lattice quantizer is
indeed strictly better than the (lower-rate) Voronoi code with
r = qM (1 − rq,M) = q(q − 1), and is almost as good as the
reference Voronoi code with r = qM = q2. Remarkably, using
the overload avoidance mechanism, both schemes are less than
1/2 bit away from the fundamental limit, using a simple code
of dimension d = 4.

III. FAST INNER-PRODUCT COMPUTATION

Our main motivation for introducing the hierarchical scheme
was to develop a fast decoder for the quantization for inner
product computation problem. Let x and y be two vectors in
Rd that were quantized by the hierarchical scheme above. We
have that

x̂ =

M−1∑
i=0

qix̂i; ŷ =

M−1∑
j=0

qj ŷj , (13)

where x̂i, ŷj ∈ Aq for all i, j ∈ {0, . . . ,M−1}. Consequently,

x̂⊤ŷ =

M−1∑
i=0

M−1∑
j=0

qi+j · x̂⊤
i ŷj . (14)

Note further that all inner products x̂⊤
i ŷj participating in the

sum above, involve two vectors in Aq . Furthermore, the vector
x̂i is represented by the encoding vector bi(x) ∈ [q]d in
Algorithm 1 (in particular, we have x̂i = G · bi(x) − q ·
QL(G · bi(x))/q)), and similarly ŷj is represented by the
encoding vector bj(y) ∈ [q]d. We can therefore pre-compute
all q2d inner products in Aq × Aq and store the results in
an LUT {L(bi, bj)}bi,bj∈[q]d×[q]d indexed by two encoding
vectors bi, bj . It therefore follows that for if our goal is to
quantize x, y ∈ Rd in order to compute an approximation for
x⊤y, we can quantize each of them to b0(x), . . . , bM−1(x)
and b0(y), . . . , bM−1(y) using Algorithm 1 with rate R =
M log2(q) bits per entry, and then decode the inner product
via

x̂⊤ŷ =

M−1∑
i=0

M−1∑
j=0

qi+j · L(bi(x), bj(y)). (15)

The complexity of decoding the inner product x̂⊤ŷ there-
fore consists of querying the LUT M2 times, M2 scalar
multiplications of the fetched LUT values by qi+j (if q is
a power of 2 this can be implemented by simple bit-shifts)
and M2 additions. As mentioned above, the main gain of the
hierarchical scheme is that we only need to store a single LUT

(a) Vector quantization, M = 2, q varies (b) Inner product quantization, q = 4, M varies

Fig. 2: Distortion-Rate curves for nested lattice quantizers, L = D4.

of size 2d log2(q) = 22d
R
M , instead of an LUT of size 22dR that

is needed if standard Voronoi codes are used. The “price” for
the reduction of the LUT size is that we need to access it M2

times.
Scaling and dithering: As in the previous section, one can

scale and shift the constellation by encoding x
β1
−z1 rather than

x and y
β2
−z2 rather than y, where β1, β2 > 0 and z1, z2 ∈ V .

The decoder in turn, should output β1β2(x̂ + z1)
⊤(ŷ + z2)

rather than x̂⊤ŷ. Taking arbitrary dither vectors z1, z2 ∈ V
does not permit to decode (x̂+z1)

⊤(ŷ+z2) only by accessing
the LUT L, as in (15). To circumvent this issue, we restrict the
dither vectors to the constellation q−1Aq ⊂ V . In particular,
we choose two vectors bzk ∈ [q]d, k = 1, 2 and set zk =
q−1 [G · bzk − q ·QL((G · bzk)/q)] as our dither vectors. We
can then define b−1(x) = bz1 and b−1(y) = bz2 and compute

(x̂+ z1)
⊤(ŷ + z2) =

M−1∑
i=−1

M−1∑
j=−1

qi+j · L(bi(x), bj(y)). (16)

One-sided quantization: There are many practical scenar-
ios where one needs to compute many inner products y⊤xk,
k = 1, . . . ,K between a fixed vector y ∈ Rd and many other
vectors x1, . . . , xK ∈ Rd, k ≫ 1. For instance, x1, . . . , xK

can be vectors in a database, and y is a query for which one
needs to find the approximate nearest neighbor in the database.
In such situations, it is often the case that y can be stored
essentially in full resolution, but the vectors in the database
must be quantized. Assuming we quantize each xk (assuming
no dithering for simplicity) using our hierarchical scheme, we
can compute each inner product as

y⊤x̂k =

M−1∑
i=0

qiLy(bi(xk)), k = 1, . . . ,K, (17)

where Ly is an LUT of size qd = 2d
R
M consisting of the values

of all inner products between y and a vector in Aq .
Arbitrary dimension via product codes: In order to solve

the quantization for inner product computation problem for
vectors x, y ∈ Rn, n ≫ 1, we use a product of quantizers
for Rd. Let K = n/d, and assume for simplicity that K is

an integer. We may split x and y to K chunks, each of size
d, such that x = [x⊤

1 | · · · |x⊤
K]⊤, y = [y⊤1 | · · · |y⊤K]⊤. We can

then quantize each chunk xk (resp. yk) to x̂k (resp. ŷk) using
our hierarchical d-dimensional scheme, and decode the inner
product as

x̂⊤ŷ =

K∑
k=1

x̂⊤
k ŷk. (18)

Universality via random rotation: Our hierarchical quan-
tizer is tailored to a Gaussian iid source, and may not perform
well when the source to be quantized does not resemble a
Gaussian vector. In order to obtain a universal quantization
for inner product scheme, whose performance depends only
on ∥x∥2, ∥y∥2 and |x⊤y|, one should draw a random rotation
matrix S ∈ Rn×n, and quantize Sx/∥x∥2 (resp. Sy/∥y∥2)
instead of x (reps. y). The inner product between the quantized
vectors should then be scaled back by ∥x∥2∥y∥2. See [12] for
details and and analysis.

Simulation results: We draw N = 5000 pairs of iid vectors
X,Y ∼ N (0, In) where n = 512. We use d = 4. Hence,
for each pair, we quantize each vector by chunking it to
K = 512/4 = 128 pieces, quantize each piece using a lattice
quantizer based on L = D4 ⊂ R4 with (a)Voronoi codes with
r = qM where q = 4 and M varies (b)Hierarchical nested-
lattice quantizer with q = 4 and varying M , and computing the
inner product X̂⊤Ŷ as in (18). For the hierarchical scheme, we
use the LUT approach (15). For both schemes we use the over-
laod avoidance mechanism described above, with α = 1/3. We
define the distortion as D = 1

nE(X
⊤Y−X̂⊤Ŷ)2, and also plot

the fundamental limit D ≥ Γ(R) from [12] (for R > 0.906
we have Γ(R) = 2 · 2−2R − 2−4R). The results are plotted in
Figure 2b for M = 1, 2, 3, 4. It is evident that the hierarchical
scheme has performance very close to that of Voronoi codes
with the same rate, and that both schemes are about half a bit
away of the fundamental limit.

ACKNOWLEDGMENT

This work was supported by the ISRAEL SCIENCE FOUN-
DATION (ISF), grant No.1641/21.

REFERENCES

[1] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[2] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[3] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in Neural
Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[4] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He,
“Zeroquant: Efficient and affordable post-training quantization for large-
scale transformers,” Advances in Neural Information Processing Sys-
tems, vol. 35, pp. 27 168–27 183, 2022.

[5] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for large
language models,” in International Conference on Machine Learning.
PMLR, 2023, pp. 38 087–38 099.

[6] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[7] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa, “Quip#:
Even better llm quantization with hadamard incoherence and lattice
codebooks,” arXiv preprint arXiv:2402.04396, 2024.

[8] A. Tseng, Q. Sun, D. Hou, and C. De Sa, “Qtip: Quantization with
trellises and incoherence processing,” arXiv preprint arXiv:2406.11235,
2024.

[9] S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, M. Jaggi, D. Alistarh,
T. Hoefler, and J. Hensman, “Quarot: Outlier-free 4-bit inference in
rotated llms,” arXiv preprint arXiv:2404.00456, 2024.

[10] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” Advances in neural information processing systems, vol. 29, 2016.

[11] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: Accurate
quantization for generative pre-trained transformers,” in The Eleventh
International Conference on Learning Representations, 2023. [Online].
Available: https://openreview.net/forum?id=tcbBPnfwxS

[12] O. Ordentlich and Y. Polyanskiy, “Optimal quantization for matrix
multiplication,” arXiv preprint arXiv:2410.13780, 2024.

[13] J. Conway and N. Sloane, “A fast encoding method for lattice codes and
quantizers,” IEEE Transactions on Information Theory, vol. 29, no. 6,
pp. 820–824, 1983.

[14] S. Savkin, E. Porat, O. Ordentlich, and Y. Polyanskiy, “NestQuant:
Nested lattice quantization for matrix products and LLMs,” arXiv
preprint arXiv:2502.09720, 2025.

[15] I. Kaplan, “A python package for neseted-lattice LUT,” 2025. [Online].
Available: https://github.com/iriskaplan/LatticeQuant

[16] O. Meir, “A C package for neseted-lattice LUT,” 2025. [Online].
Available: https://github.com/orimeirgit/NestedLatticeLut

[17] W. H. Equitz and T. M. Cover, “Successive refinement of information,”
IEEE Transactions on information theory, vol. 37, no. 2, pp. 269–275,
1991.

[18] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Transactions on signal processing, vol. 41, no. 12,
pp. 3445–3462, 1993.

[19] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Transactions on
circuits and systems for video technology, vol. 6, no. 3, pp. 243–250,
1996.

[20] D. Mukherjee and S. K. Mitra, “Successive refinement lattice vector
quantization,” IEEE Transactions on Image Processing, vol. 11, no. 12,
pp. 1337–1348, 2002.

[21] G. Fuchs, “Embedded voronoi codes for successive refinement lattice
vector quantization,” in 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 2013, pp. 5805–5809.

[22] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[23] A. Gersho and R. M. Gray, Vector quantization and signal compression.
Springer Science & Business Media, 2012, vol. 159.

[24] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[25] A. Babenko and V. Lempitsky, “Additive quantization for extreme vector
compression,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 931–938.

[26] D. W. Blalock and J. V. Guttag, “Bolt: Accelerated data mining with
fast vector compression,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2017, pp. 727–735.

[27] D. Blalock and J. Guttag, “Multiplying matrices without multiplying,”
in International Conference on Machine Learning. PMLR, 2021, pp.
992–1004.

[28] R. Zamir, Lattice Coding for Signals and Networks: A Structured Cod-
ing Approach to Quantization, Modulation, and Multiuser Information
Theory. Cambridge University Press, 2014.

https://openreview.net/forum?id=tcbBPnfwxS
https://github.com/iriskaplan/LatticeQuant
https://github.com/orimeirgit/NestedLatticeLut

	Introduction
	Hierarchical Nested-Lattice Quantizers
	Proposed Hierarchical Nested-Lattice Quantizers
	Bounds and numerical results

	Fast Inner-Product Computation
	References

